Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 6
540
Views
20
CrossRef citations to date
0
Altmetric
Articles

Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces

&
Pages 566-583 | Received 23 Jul 2018, Accepted 10 Dec 2018, Published online: 27 Dec 2018

References

  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI: 10.1016/j.expthermflusci.2015.03.023.
  • Y. W. Lu and S. G. Kandlikar, “Nanoscale surface modification techniques for pool boiling enhancement—A critical review and future directions,” Heat Transfer Eng., vol. 32, no. 10, pp.827–842, 2011. DOI: 10.1080/01457632.2011.548267.
  • C. Ramaswamy, Y. Joshi, W. Nakayama, and W. B. Johnson, “High-speed visualization of boiling from an enhanced structure,” Int. J. Heat Mass Transfer., vol. 45, pp. 4761–4771, 2002. DOI: 10.1016/S0017-9310(02)00196-5.
  • Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci., vol. 50, pp. 2084–2090, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.009.
  • D. Shim, et al., “Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays,” ACS Appl. Mater. Interfaces, vol. 9, pp. 17595−17602, 2017. DOI: 10.1021/acsami.7b01929.
  • H. S. Ahn, et al., “Pool boiling experiments on multiwalled carbon nanotube (MWCNT) Forests,” J. Heat Trans-T. ASME., vol. 128, pp. 1335–1342, 2006. DOI: 10.1115/1.2349511.
  • S. Ujereh, T. Fisher, and I. Mudawar, “Effects of carbon nanotube arrays on nucleate pool boiling,” Int. J. Heat Mass Transfer., vol. 50, pp. 4023–4038, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.030.
  • R. Chen, et al., “Nanowires for enhanced boiling heat transfer,” Nano Lett., vol. 9, pp. 548–553, 2009. DOI: 10.1021/nl8026857.
  • J. J. Wei and H. Honda, “Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72,” Int. J. Heat Mass Transfer., vol. 46, pp. 4059–4070, 2003. DOI: 10.1016/S0017-9310(03)00226-6.
  • M. Zhang and K. Lian, “Using bulk micromachined structures to enhance pool boiling heat transfer,” Microsyst. Technol., vol. 14, pp. 1499–1505, 2008. DOI: 10.1007/s00542-007-0531-x.
  • D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” ASME J. Heat Transfer., vol. 133, pp. 052902, 2011. DOI: 10.1115/1.4003046.
  • Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Micro/nano hierarchical structure in microchannel heat sink for boiling enhancement,” IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 285–288, 2012.
  • Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling,” J. Micromech. Microeng., vol. 22, pp. 115005, 2012. DOI: 10.1088/0960-1317/22/11/115005.
  • D. Coso, V. Srinivasan, M. C. Lu, J. Y. Chang, and A. Majumdar, “Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes,” ASME J. Heat Transfer, vol. 134, pp. 101501, 2012. DOI: 10.1115/1.4006106.
  • L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” Int. J. Heat Mass Transfer., vol. 71, pp. 189–196, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.068.
  • J. P. O’Connor and S. M. You, “A painting technique to enhance pool boiling heat-transfer in saturated FC-72,” J. Heat Trans-T. ASME., vol. 117, pp. 387–393, 1995. DOI: 10.1115/1.2822534.
  • J. Y. Chang and S. M. You, “Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72,” Int. J. Heat Mass Transf., vol. 40, pp. 4437–4447, 1997. DOI: 10.1016/S0017-9310(97)00055-0.
  • S. Vemuri and K. J. Kim, “Pool boiling of saturated FC-72 on nano-porous surface,” Int. Commun. Heat Mass Transfer., vol. 32, pp. 27–31, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.03.020.
  • W. Wu, et al., “Nucleate boiling heat transfer enhancement forWater and FC-72 on titanium oxide and silicon oxide surfaces,” Int. J. Heat Mass Transfer., vol. 53, pp. 1773–1777, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.013.
  • A. S. Moita, E. Teodori, and A. L. N. Moreira, “Influence of surface topography in the boiling mechanisms,” Int. J. Heat Fluid Flow, vol. 52, pp. 50–63, 2015. DOI: 10.1016/j.ijheatfluidflow.2014.11.003.
  • S. Das, B. Saha, and S. Bhaumik, “Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure,” Appl. Therm. Eng., vol. 113, pp. 1345–1357, 2017. DOI: 10.1016/j.applthermaleng.2016.11.135.
  • S. Das, B. Saha, and S. Bhaumik, “Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure,” Exp. Therm Fluid Sci., vol. 81, pp. 454–465, 2017. DOI: 10.1016/j.expthermflusci.2016.09.009.
  • A. Nazari and S. Saedodin, “Critical heat flux enhancement of pool boiling using a porous nanostructured coating,” Exp. Heat Transfer., vol. 30, no. 4, pp.316–327, 2017. DOI: 10.1080/08916152.2016.1249806.
  • S. K. Gupta and R. D. Misra, “An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nanocomposite coating,” Exp. Heat Transfer., 2018. DOI: 10.1080/08916152.2018.1485785.
  • W. J. Yang and H. Takizawa, “Augmented boiling on copper–graphite composite surface,” Int. J. Heat Mass Transfer, vol. 34, pp. 2751–2758, 1991. DOI: 10.1016/0017-9310(91)90233-5.
  • S. Vemuri and K. J. Kim, “Pool boiling of saturated FC-72 on nano-porous surface,” Int. Commun. Heat Mass Transfer, vol. 32, pp. 27–31, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.03.020.
  • J. Tehver, H. Sui, and V. Temkina, “Heat transfer and hysteresis phenomena in boiling on porous plasma-sprayed surface,” Exp. Thermal Fluid Sci., vol. 5, pp. 714–727, 1992. DOI: 10.1016/0894-1777(92)90115-L.
  • S. S. Hsieh and C. J. Weng, “Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c,” Int. J. Heat Mass Transfer., vol. 40, no. 3, pp.519–532, 1997. DOI: 10.1016/0017-9310(96)00166-4.
  • E. Forrest, et al., “Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings,” Int. J. Heat Mass Transf., vol. 53, pp. 58–67, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.008.
  • C. Y. Lee, M. M. H. Bhuiya, and K. J. Kim, “Pool boiling heat transfer with nano-porous surface,” Int. J. Heat Mass Transfer, vol. 53, pp. 4274–4279, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.054.
  • Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Direct growth of copper nanowires on a substrate for boiling applications,” Micro. Nano Lett., vol. 6, no. 7, pp.563–566, 2011. DOI: 10.1049/mnl.2011.0136.
  • S. Kim, et al., “Effects of nano-fluid and surfaces with nano structure on the increase of CHF,” Exp. Thermal Fuild Sci., vol. 34, pp. 487–495, 2010. DOI: 10.1016/j.expthermflusci.2009.05.006.
  • A. Zou and S. C. Maroo, “Critical height of micro/nano structures for pool boiling heat transfer enhancement,” Appl. Phys. Lett., vol. 103, no. 221602, 2013. DOI: 10.1063/1.4833543.
  • C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses,” Opt. Express, vol. 21, no. 7, pp.8460–8473, 2013. DOI: 10.1364/OE.21.017108.
  • A. Dunn, et al., “Nanosecond laser texturing for high friction applications,” Opt. Lasers Eng., vol. 62, pp. 9–16, 2014. DOI: 10.1016/j.optlaseng.2014.05.003.
  • C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel,” Appl. Phys. Lett., vol. 103, 121603, 2013.
  • C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structures formed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci., vol. 21, pp. 8460–8473, 2013.
  • C. A. Zuhlke, et al., “Self assembled nanoparticle aggregates from line focused femtosecond laser ablation,” Opt. Express, vol. 18, no. 5, pp.4329–4339, 2010. DOI: 10.1364/OE.18.025008.
  • A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev., vol. 7, no. 3, pp.385–407, 2013. DOI: 10.1002/lpor.201200017.
  • B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng., vol. 48, no. 10, pp.966–973, 2010. DOI: 10.1016/j.optlaseng.2010.05.009.
  • C. M. Kruse, et al., “Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces,” Int. J. Heat and Mass Transfer., vol. 82, pp. 109–116, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.023.
  • V. V. Nirgude and S. K. Sahu. “Enhancement of nucleate boiling heat transfer using structured surfaces,” Chem. Eng. & Process: Process Intensification, vol. 122, pp. 222–234, 2017. DOI:10.1016/j.cep.2017.10.013.
  • A. K. Das, P. K. Das, and P. Saha, “Performance of different structured surfaces in nucleate pool boiling,” Appl. Therm. Eng., vol. 29, pp. 3643–3653, 2009. DOI: 10.1016/j.applthermaleng.2009.06.020.
  • J. Ham, H. Kim, Y. Shin, and H. Cho, “Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration,” Int. J. Thermal Sci., vol. 114, pp. 86–97, 2017. DOI: 10.1016/j.ijthermalsci.2016.12.009.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 75, pp. 3–12, 1953.
  • W. M. Rohsenow, J. R. Hartnett, and Y. I. Cho, Handbook of Heat Transfer. Third edition. New York: McGraw-Hill, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.