Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 6
235
Views
12
CrossRef citations to date
0
Altmetric
Articles

Combined effects of holes and winglets on chevron plate-fins to enhance the performance of a plate-fin heat exchanger working with nanofluid

& ORCID Icon
Pages 584-599 | Received 20 Feb 2018, Accepted 08 Jan 2019, Published online: 28 Jan 2019

References

  • H. Heidary and M. J. Kermani, “Enhancement of heat exchange in a wavy channel linked to a porous domain; a possible duct geometry for fuel cells,” Int. Commun. Heat Mass Transfer, vol. 39, no. 1, pp.112–120, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.10.001.
  • J. Yin, G. Yang, and Y. Li, “The effects of wavy plate phase shift on flow and heat transfer characteristics in corrugated channel,” Energy Procedia, vol. 14, pp. 1566–1573, 2012. DOI: 10.1016/j.egypro.2011.12.1134.
  • H. Pehlivan, I. Taymaz, and Y. İslamoğlu, “Experimental study of forced convective heat transfer in a different arranged corrugated channel,” Int. Commun. Heat Mass Transfer, vol. 46, pp. 106–111, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.016.
  • H. A. Mohammed, A. M. Abed, and M. A. Wahid, “The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement,” Int. Commun. Heat Mass Transfer, vol. 40, pp. 47–57, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.022.
  • M. Khoshvaght-Aliabadi, “Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels,” Energy Convers. Manage., vol. 88, pp. 96–105, 2014. DOI: 10.1016/j.enconman.2014.08.042.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, “Role of channel shape on performance of plate-fin heat exchangers: experimental assessment,” Int. J. Therm. Sci., vol. 79, pp. 183–193, 2014. DOI: 10.1016/j.ijthermalsci.2014.01.004.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, “Experimental analysis of thermal–hydraulic performance of copper–water nanofluid flow in different plate-fin channels,” Exp. Therm Fluid Sci., vol. 52, pp. 248–258, 2014. DOI: 10.1016/j.expthermflusci.2013.09.018.
  • M. Khoshvaght-Aliabadi, S. Zangouei, and F. Hormozi. “Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation,” Int. J. Therm. Sci., vol. 88, pp. 180–192. 2015 DOI:10.1016/j.ijthermalsci.2014.10.001.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, “Effects of geometrical parameters on performance of plate-fin heat exchanger: vortex-generator as core surface and nanofluid as working media,” Appl. Therm. Eng., vol. 70, no. 1, pp.565–579, 2014. DOI: 10.1016/j.applthermaleng.2014.04.026.
  • Y. T. Yang, Y. H. Wang, and P. K. Tseng, “Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids,” Int. Commun. Heat Mass Transfer, vol. 51, pp. 9–17, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.12.002.
  • S. M. Vanaki, H. A. Mohammed, A. Abdollahi, and M. A. Wahid, “Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts,” J. Mol. Liq., vol. 196, pp. 32–42, 2014. DOI: 10.1016/j.molliq.2014.03.001.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel,” Int. Commun. Heat Mass Transfer, vol. 59, pp. 17–23, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.10.008.
  • M. A. Ahmed, M. Z. Yusoff, K. C. Ng, and N. H. Shuaib, “Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid,” Case Stud. Therm. Eng., vol. 4, pp. 65–75, 2014. DOI: 10.1016/j.csite.2014.07.001.
  • A. S. Navaei, H. A. Mohammed, K. M. Munisamy, H. Yarmand, and S. Gharehkhani, “Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels,” Powder Technol., vol. 286, pp. 332–341, 2015. DOI: 10.1016/j.powtec.2015.06.009.
  • M. Khoshvaght-Aliabadi, A. Zamzamian, and F. Hormozi, “Wavy channel and different nanofluids effects on performance of plate-fin heat exchangers,” J. Thermophys. Heat Transfer, vol. 28, no. 3, pp.474–484, 2014. DOI: 10.2514/1.T4209.
  • M. A. Ahmed, M. Z. Yusoff, K. C. Ng, and N. H. Shuaib, “Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid,” Case Stud. Therm. Eng., vol. 6, pp. 77–92, 2015. DOI: 10.1016/j.csite.2015.07.003.
  • E. A. Handoyo, D. Ichsani, and S. Prabowo, “Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater,” Sol. Energy, vol. 131, pp. 47–60, 2016. DOI: 10.1016/j.solener.2016.02.031.
  • M. Khoshvaght-Aliabadi and F. Hormozi, “Heat transfer enhancement by using copper–water nanofluid flow inside a pin channel,” Exp. Heat Transfer, vol. 28, no. 5, pp.446–463, 2015. DOI: 10.1080/08916152.2014.907844.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, “Experimental study of Cu–water nanofluid forced convective flow inside a louvered channel,” Heat Mass Transfer, vol. 51, pp. 423–432, 2015. DOI: 10.1007/s00231-014-1422-1.
  • M. Khoshvaght-Aliabadi and F. Hormozi, “Investigation on heat transfer and pressure drop of copper–water nanofluid flow in plain and perforated channels,” Exp. Heat Transfer, vol. 29, no. 4, pp.427–444, 2016. DOI: 10.1080/08916152.2015.1024350.
  • M. Khoshvaght-Aliabadi, “Thermal performance of plate‑fin heat exchanger using passive techniques: vortex-generator and nanofluid,” Heat Mass Transfer, vol. 52, pp. 819–828, 2016. DOI: 10.1007/s00231-015-1603-6.
  • M. Khoshvaght-Aliabadi and F. Hormozi, “Heat transfer of Cu–water nanofluid in parallel, corrugated, and strip channels,” J. Thermophys. Heat Transfer, vol. 29, no. 4, pp.747–756, 2015. DOI: 10.2514/1.T4479.
  • M. Khoshvaght-Aliabadi, P. Rahnama, A. Zanganeh, and M. H. Akbari, “Experimental study on metallic water nanofluids flow inside rectangular duct equipped with circular pins (pin channel),” Exp. Therm Fluid Sci., vol. 72, pp. 18–30, 2016. DOI: 10.1016/j.expthermflusci.2015.10.029.
  • M. Khoshvaght-Aliabadi, S. E. Hosseini Rad, and F. Hormozi, “Al2O3–water nanofluid inside wavy mini-channel with different cross-sections,” J. Taiwan Inst. Chem. Eng., vol. 58, pp. 8–18, 2016. DOI: 10.1016/j.jtice.2015.05.029.
  • Y. J. Baik, S. Jeon, B. Kim, D. Jeon, and C. Byon, “Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors,” Int. J. Heat Mass Transfer, vol. 114, pp. 809–815, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.119.
  • S. Pati, S. K. Mehta, and A. Borah, “Numerical investigation of thermo-hydraulic transport characteristics in wavy channels: comparison between raccoon and serpentine channels,” Int. Commun. Heat Mass Transfer, vol. 88, pp.171–176, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.09.001.
  • M. Khoshvaght-Aliabadi, “Thermal–hydraulic characteristics of novel configurations of wavy channel: nanofluid as working fluid,” Heat Transfer Eng., vol. 38, no. 16, pp.1382–1395, 2017. DOI: 10.1080/01457632.2016.1255028.
  • A. A. A. Arani, S. Sadripour, and S. Kermani, “Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength,” Int. J. Mech. Sci., vol. 128–129, pp. 550–563, 2017. DOI: 10.1016/j.ijmecsci.2017.05.030.
  • M. Khoshvaght-Aliabadi, Z. Baneshi, and S. F. Khaligh, “Analysis on performance of nanofluid-cooled vortex-generator channels with variable longitudinal spacing among delta-winglets,” Appl. Therm. Eng., vol. 122, pp. 1–10, 2017. DOI: 10.1016/j.applthermaleng.2017.05.016.
  • S. Skullong, P. Promvonge, C. Thianpong, N. Jayranaiwachira, and M. Pimsarn, “Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate,” Appl. Therm. Eng., vol. 122, pp. 268–284, 2017. DOI: 10.1016/j.applthermaleng.2017.04.158.
  • M. Khoshvaght-Aliabadi, A. Jafari, O. Sartipzadeh, and M. Salami, “Thermal–hydraulic performance of wavy plate-fin heat exchanger using passive techniques: perforations, winglets, and nanofluids,” Int. Commun. Heat Mass Transfer, vol. 78, pp. 231–240, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.09.019.
  • M. Khoshvaght-Aliabadi, M. Tatari, and M. Salami, “Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers,” Renewable Energy, vol. 115, pp. 1099–1108, 2017. DOI: 10.1016/j.renene.2017.08.092.
  • A. R. S. Suri, A. Kumar, and R. Maithani, “Experimental determination of enhancement of heat transfer in a multiple square perforated twisted tape inserts heat exchanger tube,” Exp. Heat Transfer, vol. 31, no. 2, pp.85–105, 2018. DOI: 10.1080/08916152.2017.1397814.
  • M. Khoshvaght-Aliabadi and F. Hormozi, “Investigation on heat transfer and pressure drop of copper-water nanofluid flow in plain and perforated channels,” Exp. Heat Transfer, vol. 29, no. 4, pp.427–444, 2016. DOI: 10.1080/08916152.2015.1024350.
  • G. Yakar and R. Karabacak, “Investigation of Thermal Performance of Perforated Finned Heat Exchangers,” Exp. Heat Transfer, vol. 28, no. 4, pp.354–365, 2015. DOI: 10.1080/08916152.2014.887159.
  • M. Khoshvaght-Aliabadi, M. H. Akbari, and F. Hormozi, “An empirical study on vortex-generator insert fitted in tubular heat exchangers with dilute Cu–water nanofluid flow,” Chin. J. Chem. Eng., vol. 24, no. 6, pp.728–736, 2016. DOI: 10.1016/j.cjche.2016.01.014.
  • M. Khoshvaght-Aliabadi, H. Shabanpour, A. Alizadeh, and O. Sartipzadeh, “Experimental assessment of different inserts inside straight tubes: nanofluid as working media,” Chem. Eng. Process.: Process Intensif., vol. 97, pp.1–11, 2015. DOI: 10.1016/j.cep.2015.08.009.
  • M. Khoshvaght-Aliabadi, A. Zanganeh, M. H. Akbari, and M. Eskandari, “Experimental investigation on thermal-hydraulic characteristics of a tube equipped with modified vortex-generator (VG) inserts,” Exp. Heat Transfer, vol. 30, no. 1, pp.11–24, 2017. DOI: 10.1080/08916152.2015.1135201.
  • X.-L. Tian, et al., “Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators,” Exp. Heat Transfer, vol. 31, no. 4, pp.297–316, 2018. DOI: 10.1080/08916152.2017.1410503.
  • J. M. Wu and W. Q. Tao, “Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle,” Int. J. Heat Mass Transfer, vol. 51, no. 5–6, pp.1179–1191, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.03.032.
  • G. Zhou and Z. Feng, “Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes,” Int. J. Therm. Sci., vol. 78, pp. 26–35, 2014. DOI: 10.1016/j.ijthermalsci.2013.11.010.
  • G. Lu and G. Zhou, “Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes,” Int. J. Heat Mass Transfer, vol. 102, pp. 679–690, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.063.
  • S. Chamoli, R. Lu, and P. Yu, “Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts,” Appl. Therm. Eng., vol. 121, pp. 1117–1134, 2017. DOI: 10.1016/j.applthermaleng.2017.03.145.
  • Z. Han, Z. Xu, and J. Wang, “Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole,” Int. J. Heat Mass Transfer, vol. 126, pp. 993–1001, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.081.
  • S. Skullong, P. Promvonge, N. Jayranaiwachira, and C. Thianpong, “Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts,” Chem. Eng. Process.: Process Intensif., vol. 109, pp.164–177, 2016. DOI: 10.1016/j.cep.2016.09.005.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, and S. H. Mazloumi, “Performance enhancement of straight and wavy miniature heat sinks using pin-fin interruptions and nanofluids,” Chem. Eng. Process.: Process Intensif., vol. 122, pp.90–108, 2017. DOI: 10.1016/j.cep.2017.10.002.
  • M. Khoshvaght-Aliabadi, E. Ahmadian, and O. Sartipzadeh, “Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS),” Int. Commun. Heat Mass Transfer, vol. 81, pp. 19–27, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.009.
  • J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. Second ed. Sausalito, California: University Science Books, 1997.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” Int. J. Heat Mass Transfer, vol. 24, pp. 715–726, 1981. DOI: 10.1016/0017-9310(81)90015-6.
  • F. P. Incropera, P. D. Dewitt, T. L. Bergman, and A. S. Lavine. Fundamental of Heat and Mass Transfer. Hoboken, NJ: John-Wiley & Sons Inc., 2006.
  • C. Thianpong, P. Eiamsa-Ard, P. Promvonge, and S. Eiamsa-Ard, “Effect of perforated twisted-tapes with parallel wings on heat tansfer enhancement in a heat exchanger tube,” Energy Procedia, vol. 14, pp. 1117–1123, 2012. DOI: 10.1016/j.egypro.2011.12.1064.
  • A. Hasanpour, M. Farhadi, and K. Sedighi, “Experimental heat transfer and pressure drop study on typical, perforated, V-cut and U-cut twisted tapes in a helically corrugated heat exchanger,” Int. Commun. Heat Mass Transfer, vol. 71, pp. 126–136, 2016. DOI: 10.1016/j.icheatmasstransfer.2015.12.032.
  • S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviors of nanofluids in a uniformly heated tube,” Superlattices Microstruct., vol. 35, pp. 543–557, 2004. DOI: 10.1016/j.spmi.2003.09.012.
  • S. M. Fotukian and M. N. Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube,” Int. J. Heat Fluid Flow, vol. 31, pp. 606–612, 2010. DOI: 10.1016/j.ijheatfluidflow.2010.02.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.