Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 2
364
Views
10
CrossRef citations to date
0
Altmetric
Articles

Whole field measurements to identify the critical Rayleigh number for the onset of natural convection in top open cavity

, , &
Pages 123-140 | Received 07 Jan 2019, Accepted 20 Feb 2019, Published online: 25 Mar 2019

References

  • F. Penot, “Numerical calculation of two-dimensional natural convection in isothermal open cavities,” Numer. Heat Transfer, vol. 5, pp. 421–437, 1982. DOI: 10.1080/10407788208913457.
  • R. A. Showole and J. D. Tarasuk, “Experimental and numerical studies of natural convection with flow separation in upward-facing inclined open cavities,” J. Heat Tr., vol. 115, pp. 592–605, 1993. DOI: 10.1115/1.2910729.
  • P. Le Quere, J. A. C. Humphrey, and F. S. Sherman, “Numerical calculation of thermally driven two-dimensional unsteady laminar flow in cavities of rectangularcross section,” Numer. Heat Transfer, vol. 4, pp. 249–283, 1981. DOI: 10.1080/01495728108961792.
  • A. Srivastava, A. Phukan, P. K. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren, and shadowgraph,” Opt. Lasers Eng., vol. 42, pp. 469–485, 2004. DOI: 10.1016/j.optlaseng.2004.03.003.
  • S. S. Cha and K. J. Choi, “An interferometric investigation of open-cavity natural-convection heat transfer,” Exp. Heat Transfer, vol. 2, pp. 27–40, 1989. DOI: 10.1080/08916158908946352.
  • M. A. Omara, “Natural convection from a corrugated heated surface at the bottom of vented rectangular enclosure,” Exp. Heat Transfer, vol. 29, pp. 796–810, 2016. DOI: 10.1080/08916152.2015.1135200.
  • A. A. Mohamad, “Natural convection in open cavities and slots,” Numer. Heat Transfer, vol. 27, pp. 705–716, 1995. DOI: 10.1080/10407789508913727.
  • E. Bilgen and H. Oztop, “Natural convection heat transfer in partially open inclined square cavities,” Int. J. Heat Mass Transfer, vol. 48, pp. 1470–1479, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.020.
  • F. Arpino, N. Massarotti, and A. Mauro, “High Rayleigh number laminar-free convection in cavities: new benchmark solutions,” J. Numer. Heat. Tr. B, vol. 58, pp. 73–97, 2010. DOI: 10.1080/10407790.2010.508438.
  • W. Wu and C. Y. Ching, “The effect of the top wall temperature on the laminar natural convection in rectangular cavities with different aspect ratios,” Am. Soc. Mech. Eng., vol. 1, pp. 1005–1012, 2007.
  • A. Naghib, J. Patterson, and C. Lei, “Natural convection induced by absorption of solar radiation in the nearshore region of lakes and reservoirs: experimental results,” Exp. Therm. Fluid Sci., vol. 90, pp. 101–114, 2018. DOI: 10.1016/j.expthermflusci.2017.08.030.
  • K. Chandra, “Instability of fluids heated flow below,” ‎Proc. R. Soc. A, vol. 164, pp. 231–242, 1937.
  • D. J. Yang and C. K. Choi., “The onset of thermal convection in a horizontal fluid layer heated from below with time dependent heat flux,” Phys. Fluids, vol. 14, pp. 930–937, 2002. DOI: 10.1063/1.1433494.
  • G. K. Perekattu and C. Balaji, “On the onset of natural convection in differentially heated shallow fluid layers with internal heat generation,” Int. J. Heat Mass Transfer, vol. 52, pp. 4254–4263, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.04.006.
  • S. Xiaowen, “Simulation of Rayleigh-Benard convection using a lattice boltzmann method,” Phys. Rev., vol. 55, pp. 2780–2788, 1997.
  • C. Xia and Y. J. Murthy, “Buoyancy-driven flow transitions in deep cavities heated from below,” ASME J. Heat Transfer, vol. 124, pp. 650–659, 2002. DOI: 10.1115/1.1481356.
  • A. Mohamad and R. Viskanta, “Laminar flow and heat transfer in Rayleigh–bénard convection with shear,” Phys. Fluids, vol. 10, pp. 2131–2140, 1992. DOI: 10.1063/1.858509.
  • Y. Gelfgat, “Different modes of Rayleigh–benard instability in two and three-dimensional rectangular enclosures,” J. Comput. Phys., vol. 156, pp. 300–324, 1999. DOI: 10.1006/jcph.1999.6363.
  • D. W. Crunkleton and T. J. Anderson, “A numerical study of flow and thermal fields in the tilted Rayleigh-Benard convection,” Int. Commutations Heat Mass Transfer, vol. 33, pp. 24–29, 2006. DOI: 10.1016/j.icheatmasstransfer.2005.09.004.
  • A. Saxena, V. Kishor, S. Singh, and A. Srivastava, “Experimental and numerical study on the onset of natural convection in a cavity open at the top,” Phys. Fluids, vol. 30, pp. 057102, 2018. DOI: 10.1063/1.5025092.
  • S. Mukhija and A. K. Nayak, “Experimental study of transient heat transfer characteristics of single-phase natural convection in multidimensional porous bed with volumetric heat generation,” Exp. Heat Transfer, vol. 32, pp. 85–101, 2019. DOI: 10.1080/08916152.2018.1485782.
  • W. Liu, et al., “Natural convection heat transfer at reduced pressures,” Exp. Heat Transfer, vol. 32, pp. 14–24, 2019. DOI: 10.1080/08916152.2018.1468833.
  • S. Narayan, A. K. Singh, and A. Srivastava, “Interferometric study of natural convection heat transfer phenomena around array of heated cylinders,” Int. J. Heat Mass Transfer, vol. 109, pp. 278–292, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.106.
  • S. S. Rao and A. Srivastava, “Interferometric study of natural convection in a differentially-heated cavity with Al2O3–water based dilute nanofluids,” Int. J. Heat Mass Transfer, vol. 92, pp. 1128–1142, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.074.
  • S. Mohanan and A. Srivastava, “Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids,” Appl. Opt., vol. 53, pp. 2331–2344, 2014. DOI: 10.1364/AO.53.002331.
  • K. Choudhury, R. K. Singh, S. Narayan, A. Srivastava, and A. Kumar, “Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two dimensional mapping of the ambient and plasma density,” Phys. Plasmas, vol. 23, no. 4, pp.042108, 2016. DOI: 10.1063/1.4947032.
  • V. Kishor, S. Singh, and A. Srivastava, “Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: whole field experiments and numerical simulations,” Exp. Therm. Fluid Sci., vol. 99, pp. 71–84, 2018. DOI: 10.1016/j.expthermflusci.2018.07.021.
  • Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,” Appl. Opt., vol. 47, pp. 5408–5419, 2008.
  • Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng., vol. 45, pp. 304–317, 2007. DOI: 10.1016/j.optlaseng.2005.10.012.
  • Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt., vol. 43, pp. 2695–2702, 2004.
  • I. Catton., “The effects of the insulation vertical walls on the onset of motion in a fluid heated from below,” Int. J. Heat Mass Transfer, vol. 15, pp. 665–672, 1971. DOI: 10.1016/0017-9310(72)90112-3.
  • J. Mizushima, H. Okamoto, and H. Yamaguchi, “Stability of flow in a channel with a suddenly expanded part,” Phys. Fluids, vol. 8, pp. 2933, 1996. DOI: 10.1063/1.869072.
  • V. Erenburg, A. Y. Gelfgat, E. Kit, P. Z. Bar-Yoseph, and A. Solan, “Multiple states, stability and bifurcations of natural convection in a rectangular cavity with partially heated vertical walls,” J. Fluid Mech., vol. 492, pp. 63, 2003. DOI: 10.1017/S0022112003005469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.