Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 3
580
Views
11
CrossRef citations to date
0
Altmetric
Articles

Investigation of the freezing process of water droplets based on average and local initial ice fraction

, , , &
Pages 197-209 | Received 03 Dec 2018, Accepted 25 Mar 2019, Published online: 05 Apr 2019

References

  • F. T. Lynch and A. Khodadoust, “Effects of ice accretions on aircraft aerodynamics,” Prog. Aerosp. Sci., vol. 37, no. 8, pp. 669–767, 2001. DOI: 10.1016/S0376-0421(01)00018-5.
  • S. L. Chen, S. S. Liang, and J. T. Hong, “Effects of natural convection on ice formation inside a horizontal cylinder,” Exp. Heat Transfer, vol. 5, pp. 131–145, 1992. DOI: 10.1080/08916159208946437.
  • M. Amini, M. Yaghoubi, and A. R. Pishevar, “Analysis of frost visualization over a fin and tube heat exchanger by natural convection,” Exp. Heat Transfer, vol. 32, no. 1, pp. 36–50, 2019. DOI: 10.1080/08916152.2018.1473528.
  • Y. Cao, Z. Wu, Y. Su, and Z. Xu, “Aircraft flight characteristics in icing conditions,” Prog. Aerosp. Sci., vol. 74, pp. 62–80, 2015. DOI:10.1016/j.paerosci.2014.12.001.
  • M. Zhang, X. Zhang, J. Lu, W. Pei, and C. Wang, “Analysis of volumetric unfrozen water contents in freezing soils,” Exp. Heat Transfer, 2018. DOI: 10.1080/08916152.2018.1535528.
  • R. I. Egbert, R. L. Schrag, W. D. Bernhart, G. W. Zumwalt, and T. J. Kendrew, “An investigation of power line de-icing by electro-impulse methods,” IEEE Trans. Power Delivery, vol. 4, no. 3, pp. 1855–1861, 1989. DOI: 10.1109/61.32682.
  • C. Zilio and L. Patricelli, “Aircraft anti-ice system: evaluation of system performance with a new time dependent mathematical model,” Appl. Thermal Eng., vol. 63, no. 1, pp. 40–51, 2014. DOI: 10.1016/j.applthermaleng.2013.10.048.
  • W. Lian and Y. Xuan, “Experimental investigation on a novel aero-engine nose cone anti-icing system,” Appl. Thermal Eng., vol. 121, pp. 1011–1021, 2017. DOI:10.1016/j.applthermaleng.2017.04.160.
  • R. Hosseini and M. Rahaeifard, “Experimental investigation and theoretical modeling of ice-melting processes,” Exp. Heat Transfer, vol. 22, no. 3, pp. 144–162, 2009. DOI: 10.1080/08916150902949873.
  • F. Feuillebois, A. Lasek, P. Creismas, F. Pigeonneau, and A. Szaniawski, “Freezing of a subcooled liquid droplet,” J. Colloid Interface Sci., vol. 169, pp. 90–102, 1995. DOI:10.1006/jcis.1995.1010.
  • M. Strub, O. Jabbour, F. Strub, and J. P. Bedecarrats, “Experimental study and modelling of the crystallization of a water droplet,” Int. J. Refrig., vol. 26, no. 1, pp. 59–68, 2003. DOI: 10.1016/S0140-7007(02)00021-X.
  • A. Alizadeh, et al., “Dynamics of ice nucleation on water repellent surfaces,” Langmuir, vol. 28, pp. 3180–3186, 2012. DOI:10.1021/la2045256.
  • G. Yang, K. Guo, and N. Li, “Freezing mechanism of supercooled water droplet impinging on metal surfaces,” Int. J. Refrig., vol. 34, pp. 2007–2017, 2011. DOI:10.1016/j.ijrefrig.2011.07.001.
  • L. Mishchenko, et al., “Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets,” ACS Nano, vol. 4, no. 12, pp. 7699–7707, 2010. DOI: 10.1021/nn102557p.
  • Y. Yao, C. Li, Z. Tao, R. Yang, and H. Zhang, “Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface,” Appl. Thermal Eng., vol. 137, pp. 83–92, 2018. DOI:10.1016/j.applthermaleng.2018.03.057.
  • X. Zhang, X. Wu, and J. Min, “Freezing and melting of a sessile water droplet on a horizontal cold plate,” Exp. Thermal Fluid Sci., vol. 88, pp. 1–7, 2017. DOI:10.1016/j.expthermflusci.2017.05.009.
  • J. P. Hindmarsh, A. B. Russell, and X. D. Chen, “Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet,” Int. J. Heat Mass Transfer., vol. 46, no. 7, pp. 1199–1213, 2003. DOI: 10.1016/S0017-9310(02)00399-X.
  • S. Tabakova and F. Feuillebois, “On the solidification of supercooled liquid droplet lying on a surface,” J. Colloid Interface Sci., vol. 272, pp. 225–234, 2004. DOI:10.1016/j.jcis.2003.10.029.
  • S. Jung, M. K. Tiwari, and D. Poulikakos, “Frost halos from supercooled water droplets,” Proc. Natl.Acad. Sci. USA, vol. 109, no. 40, pp. 16073–16078, 2012. DOI: 10.1073/pnas.1206121109.
  • S. Jung, M. K. Tiwari, N. V. Doan, and D. Poulikakos, “Mechanism of supercooled droplet freezing on surfaces,” Nat. Commun., vol. 3, pp. 615, 2012. DOI:10.1038/ncomms1630.
  • T. V. Vu, G. Tryggvason, S. Homma, J. C. Wells, and H. Takakura, “A front-tracking method for three-phase computations of solidification with volume change,” J. Chem. Eng. Jpn., vol. 46, pp. 726–731, 2013. DOI:10.1252/jcej.13we169.
  • H. Zhang, Y. Zhao, R. Lv, and C. Yang, “Freezing of sessile water droplet for various contact angles,” Int. J. Thermal Sci., vol. 101, pp. 59–67, 2016. DOI:10.1016/j.ijthermalsci.2015.10.027.
  • G. Chaudhary and R. Li, “Freezing of water droplets on solid surfaces: an experimental and numerical study,” Exp. Thermal Fluid Sci., vol. 57, pp. 86–93, 2014. DOI:10.1016/j.expthermflusci.2014.04.007.
  • C. Ravey, C. Pradere, N. Regnier, and J.-C. Batsale, “Study of phase change and supercooling in micro-channels by infrared thermography,” Exp. Heat Transfer, vol. 29, no. 2, pp. 266–283, 2016. DOI: 10.1080/08916152.2014.973980.
  • X. Zhang, X. Wu, J. Min, and X. Liu, “Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect,” Appl. Thermal Eng., vol. 125, pp. 644–651, 2017. DOI:10.1016/j.applthermaleng.2017.07.017.
  • V. Voller, “Implicit finite-difference solutions of the enthalpy formulation of Stefan problems,” J. Numer. Anal., vol. 5, pp. 201–214, 1985. DOI:10.1093/imanum/5.2.201.
  • F. Rösler and D. Brüggemann, “Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments,” Heat Mass Transfer., vol. 47, pp. 1027–1033, 2011. DOI:10.1007/s00231-011-0866-9.
  • Y. Yao, C. Li, H. Zhang, and R. Yang, “Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces,” Appl. Surf. Sci., vol. 419, pp. 52–62, 2017. DOI:10.1016/j.apsusc.2017.04.085.
  • D. C. D. Roux and J. J. Cooper-White, “Dynamics of water spreading on a glass surface,” J. Colloid Interface Sci., vol. 277, pp. 424–436, 2004. DOI:10.1016/j.jcis.2004.05.007.
  • P. Chen and X. Wang, “Experimental study of water drop impact on wood surfaces,” Int. J. Heat Mass Transfer., vol. 54, pp. 4143–4147, 2011. DOI:10.1016/j.ijheatmasstransfer.2011.05.005.
  • H. Zhang, X. Wang, L. Zheng, and S. Sampath, “Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying,” Int. J. Heat Mass Transfer., vol. 47, pp. 2191–2203, 2003. DOI:10.1016/j.ijheatmasstransfer.2003.11.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.