Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 3
324
Views
13
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of heat transfer of impinging jet on a roughened plate by a micro cubic shape

, &
Pages 210-225 | Received 14 Jan 2019, Accepted 29 Apr 2019, Published online: 12 May 2019

References

  • P. Xu, et al., “Heat transfer and entropy generation in air jet impingement on a model rough surface,” Int. Commun. Heat Mass Transf., vol. 72, pp. 48–56, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.01.007.
  • E. Y. Jung, S. H. Oh, D. H. Lee, K. M. Kim, and H. H. Cho, “Effect of impingement jet on the full-coverage film cooling system with double layered wall,” Exp. Heat Transfer., vol. 30, pp. 544–562, 2017. DOI: 10.1080/08916152.2017.1328470.
  • H. Martin, “Heat and mass transfer between impinging gas jets and solid surfaces,” Adv. Heat Tran., vol. 13, pp. 1–60, 1977.
  • S. Polat, “Heat and mass transfer in impingement drying, Dry,” Technol., vol. 11, pp. 1147–1176, 1993.
  • A. H. Beitelmal, M. A. Saad, and C. D. Patel, “Effect of surface roughness on the average heat transfer of an impinging air jet,” Int. Commun. Heat Mass Transf., vol. 27, pp. 1–12, 2000. DOI: 10.1016/S0735-1933(00)00079-8.
  • W. M. Chakroun, A. A. Abdel-Rahman, and S. F. Al-Fahed, “Heat transfer augmentation for air jet impinged on a rough surface,” Appl. Therm. Eng., vol. 18, pp. 1225–1241, 1998. DOI: 10.1016/S1359-4311(97)00100-2.
  • R. Naddaa, A. Kumara, R. Maithanib, and R. Kumar, “Investigation of thermal and hydrodynamic performance of impingement jets solar air passage with protrusion with combination arc obstacle on the heated plate,” Exp. Heat Transfer., vol. 31, pp. 232–250, 2018. DOI: 10.1080/08916152.2017.1405102.
  • G. Li, L. Zhu, S. Zhang, W. Guo, and Y. Zheng, “Influence of conduction heat loss on enhancing the heat transfer performance of a square flat plate with constant heat flux by an impinging jet in cross-flows,” Exp. Heat Transfer., vol. 32, pp. 219–238, 2019. DOI: 10.1080/08916152.2018.1494227.
  • A. Dhamanekar and K. Srinivasan, “Effect of impingement surface roughness on the noise from impinging jets,” Phys. Fluids, vol. 26, no. 036101, 2014. DOI: 10.1063/1.4866977.
  • M. Attalla and M. Salem, “Effect of nozzle geometry on heat transfer characteristics from a single circular air jet,” Appl. Therm. Eng., vol. 51, pp. 723–733, 2013. DOI: 10.1016/j.applthermaleng.2012.09.032.
  • M. Attalla, H. M. Maghrabie, and E. Specht, “Effect of inclination angle of a pair of air jets on heat transfer into the flat surface,” Exp. Therm. Fluid Sci., vol. 85, pp. 85–94, 2017. DOI: 10.1016/j.expthermflusci.2017.02.023.
  • G. Miyake, M. Hirata, and N. Kasagi, “Two-dimensional jet impinging on a wall with roughness elements,” Exp. Heat Transfer., vol. 7, pp. 1–17, 1994. DOI: 10.1080/08916159408946468.
  • G. Miyake, M. Hirata, and N. Kasagi, “Heat transfer characteristics of an axisymmetric jet impinging on a wall concentric roughness elements,” Exp. Heat Transfer., vol. 7, pp. 121–141, 1994. DOI: 10.1080/08916159408946476.
  • R. P. Taylor, “Surface roughness measurements on gas turbine blades,” J. Turbomachinery, vol. 112, pp. 175–180, 1990. DOI: 10.1115/1.2927630.
  • S. Chamoli, R. Lu, J. Xie, and P. Yu, “Numerical study on flow structure and heat transfer in a circular tube integrated with novel anchor shaped inserts,” Appl. Therm. Eng., vol. 135, pp. 304–324, 2018. DOI: 10.1016/j.applthermaleng.2018.02.052.
  • S. K. Singh, M. Kumar, A. Kumar, A. Gautam, and S. Chamoli, “Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts,” Appl. Therm. Eng., vol. 130, pp. 230–241, 2018. DOI: 10.1016/j.applthermaleng.2017.10.090.
  • S. Chamoli, R. Lu, D. Xu, and P. Yu, “Thermal performance improvement of a solar air heater fitted with winglet vortex generators,” Sol. Energy, vol. 159, pp. 966–983, 2018. DOI: 10.1016/j.solener.2017.11.046.
  • S. Chamoli, R. Lu, and P. Yu, “Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts,” Appl. Therm. Eng., vol. 121, pp. 1117–1143, 2017. DOI: 10.1016/j.applthermaleng.2017.03.145.
  • S. Chamoli, P. Yu, and S. Yu, “Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts,” Appl. Therm. Eng., vol. 117, pp. 708–724, 2017. DOI: 10.1016/j.applthermaleng.2017.02.047.
  • L. A. Gabour and J. H. Lienhard, “Wall roughness effects on stagnation-point heat transfer beneath an impinging liquid jet,” J. Heat Transf., vol. 1126, pp. 81–86, 1994. DOI: 10.1115/1.2910887.
  • C. Son, G. Dailey, P. Ireland, and D. Gillespie, An investigation of the application of roughness elements to enhance heat transfer in an impingement cooling system, Proceedings of GT2005, ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno-Tahoe, Nevada, USA, GT2005–68504.
  • B. Sagot, G. Antonini, and F. Buron, “Enhancement of jet-to-wall heat transfer using axisymmetric grooved impinging plates,” Int. J. Therm. Sci., vol. 49, pp. 1026–1030, 2010. DOI: 10.1016/j.ijthermalsci.2009.12.011.
  • A. H. Yousif and A. K. Bayer, “Experimental investigation of jet impingement cooling on ribbed target surface,” Eng. Tech. J., vol. 34, A No. 2, pp. 205-219, 2016.
  • C. S. Woei, J. Y. Jena, and C. S. Fei, “Heat transfer of impinging jet-array over convex-dimpled surface,” Int. J. Heat Mass Transf., vol. 49, pp. 3045–3059, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.02.030.
  • P. M. Nakod, S. V. Prabhu, and R. P. Vedula, “Heat transfer augmentation between impinging circular air jet and flat plate using finned surfaces and vortex generators,” Exp. Therm. Fluid Sci., vol. 32, pp. 1168–1187, 2008. DOI: 10.1016/j.expthermflusci.2008.01.009.
  • S. V. Ekkad and D. Kontrovitz, “Jet impingement heat transfer on the dimpled target surfaces,” Int. J. Heat Fluid Fl., vol. 23, pp. 22–28, 2002. DOI: 10.1016/S0142-727X(01)00139-4.
  • C. Gau and I. C. Lee, “Flow and impingement cooling heat transfer along triangular rib-roughened walls,” Int. J. Heat Mass Transf., vol. 43, pp. 4405–4418, 2000. DOI: 10.1016/S0017-9310(00)00064-8.
  • G. E. Andrews, R. A. A. Abdul Hussain, and M. C. Mkpadi, “Enhanced impingement heat transfer: the influence of impingement X/D for interrupted rib obstacles (rectangular pin fins), ASME J,” Turbomachine, vol. 128, pp. 312–331, 2006.
  • R. A. A. Abdul Hussain and G. E. Andrews, Enhanced full coverage impingement heat transfer with obstacles in the gap, ASME Paper No. 91-GT-346. 1991.
  • R. Brakmann, L. Chen, B. Weigand, and M. Crawford, Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin fins, Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 June 15 – 19, 2015, Montréal, Quebec, Canada.
  • C. Wan, Y. Rao, and X. Zhang, Numerical investigation of impingement heat transfer on a flat and square pin-fin roughened plates, Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, GT2013–94473.
  • Y. Xing, S. Spring, and B. Weigand, “Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different cross flow schemes,” Int. J. Therm. Sci., vol. 50, pp. 1293–1307, 2011. DOI: 10.1016/j.ijthermalsci.2010.11.008.
  • M. Attalla, “Experimental investigation of heat transfer for a jet impinging obliquely on flat surface,” Exp. Heat Transfer., vol. 28, pp. 378–391, 2015. DOI: 10.1080/08916152.2014.890963.
  • M. Attalla, “Stagnation region heat transfer for circular jets impinging on a flat plate,” Exp. Heat Transfer., vol. 28, pp. 139–155, 2015. DOI: 10.1080/08916152.2013.829134.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, pp. 1–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • H. C. Meena, S. A. Reodikar, R. Vinze, and S. V. Prabhu, “Influence of the shape of the orifice on the local heat transfer distribution between smooth flat surface and impinging incompressible air jet,” Exp. Therm. Fluid Sci., vol. 70, pp. 292–306, 2016. DOI: 10.1016/j.expthermflusci.2015.09.018.
  • Y. Ozmen and E. Baydar, “Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers,” Heat Mass Transfer., vol. 44, pp. 1315–1322, 2008. DOI: 10.1007/s00231-008-0378-4.
  • M. Rahimi, I. Owen, and J. Mistry, “Impingement heat transfer in an under expanded axisymmetric air jet,” Int. J. Heat Mass Transf., vol. 46, pp. 263–272, 2007. DOI: 10.1016/S0017-9310(02)00275-2.
  • K. Ichimiya and K. Okuyama, Characteristics of impingement heat transfer caused by circular jets with confined wall, 23rd Int. Cold Region Heat Transfer Conf., University of Alaska, Fairbanks, pp. 523–532, 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.