Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 3
302
Views
5
CrossRef citations to date
0
Altmetric
Articles

Surface heat flux measurements for short time-period on combustion chamber with different types of coaxial thermocouples

&
Pages 282-303 | Received 20 Nov 2018, Accepted 06 Jun 2019, Published online: 19 Jun 2019

References

  • D. N. Assanis and E. Badillo, “On heat transfer measurements in diesel engines using fast-response coaxial thermocouples,” ASME J. Eng. Gas Turbine Power, vol. 111, no. 3, pp. 458–465, 1989. DOI: 10.1115/1.3240276.
  • A. C. Alkidas and J. P. Myers, “Transient heat-flux measurements in the combustion chamber of a spark-ignition engine,” ASME J. Heat Transfer, vol. 104, no. 1, pp. 62–67, 1982. DOI: 10.1115/1.3245069.
  • M. A. Marr, J. S. Wallace, S. Chandra, L. Pershin, and J. Mostaghimi, “A fast response thermocouple for internal combustion engine surface temperature measurements,” Exp. Ther. Fluid Sci., vol. 34, no. 2, pp. 183–189, 2010. DOI: 10.1016/j.expthermflusci.2009.10.008.
  • M. G. Dunn, “Heat-flux measurements for the rotor of a full-stage turbine: part i—time-averaged results,” ASME J. Turbomach., vol. 108, no. 1, pp. 90–97, 1986. DOI: 10.1115/1.3262029.
  • S. Agarwal, N. Sahoo, K. J. Irimpan, V. Menezes, and S. Desai, “Comparative performance assessments of surface junction probes for stagnation heat flux estimation in a hypersonic shock tunnel,” Int. J. Heat Mass Transfer, vol. 114, pp. 748–757, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.06.109.
  • N. Sahoo and R. K. Peetala, “Transient temperature data analysis for a supersonic flight test,” ASME J. Heat Transfer, vol. 132, no. 8, pp. 084503, 2010. DOI: 10.1115/1.4001128.
  • D. L. Schultz and T. V. Jones, Heat transfer measurement in short duration hypersonic facilities, AGARD NO.165. University of Oxford Britain, London, ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PARIS FRANCE pp. 47–50, 1973. AD0758590.
  • H. A. Mohammed, H. Salleh, and M. Z. Yusoff, “Dynamic calibration and performance of reliable and fast response coaxial temperature probes in a shock tube facility,” Exp. Heat Transfer, vol. 24, no. 2, pp. 109–132, 2011. DOI: 10.1080/08916152.2010.482752.
  • P. Stathopoulos, F. Hofmann, T. Rothenfluh, and P. R. von Rohr, “Calibration of a gardon sensor in a high-temperature high heat flux stagnation facility,” Exp. Heat Transfer, vol. 25, no. 3, pp.222–237, 2012. DOI: 10.1080/08916152.2011.609631.
  • R. Kumar and N. Sahoo, “Dynamic calibration of a coaxial thermocouples for short duration transient measurements,” ASME J. Heat Transfer, vol. 135, no. 12, pp. 124502–124507, 2013. DOI: 10.1115/1.4024593.
  • R. Kumar, N. Sahoo, V. Kulkarni, and A. Singh, “Laser based calibration technique for thin film coaxial thermocouples for short duration transient measurements,” ASME J. Therm. Sci. Eng. Appl., vol. 3, no. 4, pp. 044504–0445046, 2011. DOI: 10.1115/1.4005075.
  • J. Li, H. Chen, S. Zhang, X. Zhang, and H. Yu, “On the response of coaxial surface thermocouples for transient aerodynamic heating measurements,” Exp. Therm. Fluid Sci., vol. 86, pp. 141–148, 2017. DOI:10.1016/j.expthermflusci.2017.04.011.
  • M. Lorenz, T. Horbach, A. Schulz, and H. J. Bauer, “A novel measuring technique utilizing temperature sensitive paint—measurement procedure, validation, application, and comparison with infrared thermography,” ASME J. Turbomach., vol. 135, no. 3, pp. 031003, 2013. DOI: 10.1115/1.4006638.
  • T. Alam and R. Kumar, “Radiation based calibration of thin film gauge for transient measurement,” Measurement, vol. 128, pp. 352–361, 2018. DOI:10.1016/j.measurement.2018.06.057.
  • D. A. Bendersky, “A special thermocouple for measuring transient temperatures,” Mech. Eng., vol. 75, pp. 117–121, 1953.
  • H. A. Mohammed, H. Salleh, and M. Z. Yusoff, “Design, fabrication of coaxial surface junction thermocouples for transient heat transfer measurements,” Int. Commun. Heat Mass Transfer, vol. 35, no. 7, pp. 853–859, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.03.009.
  • D. R. Buttsworth, “Assessment of effective thermal product of surface junction thermocouple on millisecond and microsecond time scale,” Exp. Therm. Fluid Sci., vol. 25, no. 6, pp. 409–420, 2001. DOI: 10.1016/S0894-1777(01)00093-0.
  • S. Agarwal, N. Sahoo, and R. Singh, “Experimental techniques for thermal product determination of coaxial surface junction thermocouples during short duration transient measurements,” Int. J. Heat Mass Transfer, vol. 103, pp. 327–335, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.07.062.
  • P. R. A. Lyons and S. L. Gai, “A method for the accurate determination of the thermal product (ρck)1/2 for thin film heat transfer or surface thermocouple gauges,” J. Phys. E: Sci. Instrum., vol. 21, no. 5, pp. 445–448, 1988. DOI: 10.1088/0022-3735/21/5/005.
  • H. Mohammed, H. Salleh, and M. Z. Yusoff, “Thermal product estimation method for aerodynamics experiments,” J. Eng. Phys. Thermophys., vol. 84, no. 4, pp.849–859, 2011. DOI: 10.1007/s10891-011-0542-4.
  • V. Menezes and S. Bhat, “A coaxial thermocouple for shock tunnel applications,” Rev. Sci. Instrum., vol. 81, no. 10, pp. 104905–104909, 2010. DOI: 10.1063/1.3494605.
  • R. J. Lubbock, S. S. Luque, and B. R. Rosic, “A new transient high heat flux convection calibration facility for heat transfer gauges in high enthalpy flows,” ASME. J. Heat Transfer, vol. 140, no. 4, pp. 041701–10, 2018. DOI: 10.1115/1.4038339.
  • S. Bretill, “Thermal diffusivity and thermal conductivity of chromel, alumel and constantan in the range 100-450K,” J. Appl. Phys., vol. 72, pp. 539–544, 1992. DOI:10.1063/1.351885.
  • S. K. Manjhi and R. Kumar, “Stagnation point transient heat flux measurement analysis from coaxial thermocouples,” Exp. Heat Transfer, vol. 31, no. 5, pp. 405–424, 2018. DOI: 10.1080/08916152.2018.1431738.
  • S. K. Manjhi and R. Kumar, “Transient heat flux measurement analysis from coaxial thermocouples at convective based step heat load,” Numer. Heat Transfer, Part A, vol. 75, no. 3, pp. 200–216, 2019. DOI: 10.1080/10407782.2019.15.
  • C. Ma, Y. Ji, S. Zang, and M. H. Chen, “An experimental study on convective heat transfer performance of steam and air flow in V-shaped rib roughened channels,” Exp. Heat Transfer, vol. 32, no. 1, pp. 51–68, 2018. DOI: 10.1080/08916152.2018.1473529.
  • R. Maithani and A. Kumar, “Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube,” Exp. Heat Transfer, 2019. DOI: 10.1080/08916152.2019.1573863.
  • H. A. Mohammed, H. Salleh, and M. Z. Yusoff, “The effect of scratch technique on the thermal-product value of temperature sensors,” Thermophys. Aeromech., vol. 18, pp. 51–64, 2011. DOI: 10.1134/S0869864311010070.
  • R. L. Powell and G. W. Burns, “Thermocouple reference tables based on the IPTS-68,” National Bureau of Standards, Department of Commerce, Washington, DC, Mar, 1974.
  • F. R. Caldwell, “Thermocouple materials, temperature; its measurement and control in science and industry”, National Bureau of Standards Monograph 40, UNT Digital Library, Washington, DC, vol. 2, 1962.
  • Y. S. Touloukian, “Specific heat metallic elements and alloys,” in Thermo-Physical Properties of Matter; TPRC Data Series, Vol. 4, Y. S. Touloukian, Ed.. New York: IFI/Plenum Press, pp. 750, A-26, 1970.
  • A. Terzis, J. V. Wolfersdorf, and B. Weigand, “Thermocouple thermal inertia effects on impingement heat transfer experiments using the transient liquid crystal technique,” Meas. Sci. Technol., vol. 23, no. 11, pp.115303(13pp), 2012. DOI: 10.1088/0957-0233/23/11/115303.
  • J. P. Holman, Experimental Methods for Engineers, 7th ed. New York: McGraw-hill, First-order systems, pp. 19–23; Thermocouples p. 368–377; Linear regression p. 91–94; Signal conditioning (RC Circuits) p. 183–190, 2001.
  • J. B. Heywood, Internal Combustion Engine Fundamentals. USA: McGraw-hill Ltd, 1988.
  • J. Taler, “Theory of transient experimental techniques for surface heat transfer,” Int. J. Heat Mass Transfer, vol. 39, no. 17, pp. 3733–3748, 1996. DOI: 10.1016/0017-9310(96)00015-4.
  • B. Carl de, A Practical Guide to Spline, Applied Mathematical Sciences, Vol. 27. New York: Springer, 1978. DOI: 10.2307/2006241.
  • W. J. Cook and E. J. Felderman, “Reduction of data from thin-film heat transfer gages: a concise numerical technique,” Aiaa J., vol. 4, no. 3, pp. 561–562, 1996. DOI: 10.2514/3.3486.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.