Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 4
279
Views
6
CrossRef citations to date
0
Altmetric
Articles

Two-phase refrigerant flow in the evaporator of a stirling cooling system with a thermosyphon loop

& ORCID Icon
Pages 305-317 | Received 13 Dec 2018, Accepted 18 Jun 2019, Published online: 26 Jun 2019

References

  • S. K. Tyagi, G. Lin, S. C. Kaushik, and J. Chen, “Thermoeconomic optimization of an irreversible stirling cryogenic refrigerator cycle,” Int. J. Refrig., vol. 27, pp. 924–931, 2004. DOI: 10.1016/j.ijrefrig.2004.04.016.
  • S. Le’an, Z. Yuanyang, L. Liansheng, and S. Pengcheng, “Performance of a prototype stirling domestic refrigerator,” Appl. Therm. Eng., vol. 29, pp. 210–215, 2009. DOI: 10.1016/j.applthermaleng.2008.02.036.
  • M. K. Ewert, et al., “Experimental evaluation of a solar PV refrigerator with thermoelectric, stirling, and vapor compression heat pumps”, Proc. of ASES Solar 98 Conf., Albuquerque, NM, 1998.
  • C. J. L. Hermes and J. R. Barbosa Jr., “Thermodynamic comparison of peltier, stirling, and vapor compression portable coolers,” Appl. Energy, vol. 91, pp. 51–85, 2012. DOI: 10.1016/j.apenergy.2011.08.043.
  • C. Song, J. Lu, and Y. Kitamura, “Study on the COP of Free Piston Stirling Cooler (FPSC) in the anti-sublimation CO2 capture process,” Renew. Energy, vol. 74, pp. 948–954, 2015. DOI: 10.1016/j.renene.2014.08.071.
  • A. Mohammad, et al., “Multi-objective optimization of an irreversible stirling cryogenic refrigerator cycle,” Energ. Convers. Manage., vol. 82, pp. 351–360, 2014. DOI: 10.1016/j.enconman.2014.03.033.
  • M. H. Ahmadi, et al., “Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale stirling refrigeration cycle operating with Maxwell–boltzmann gas,” Renew. Sust. Energy Rev., vol. 78, pp. 80–92, 2017. DOI: 10.1016/j.rser.2017.04.097.
  • D. Guo, et al., “Design and evaluation of a MEMS-based stirling microcooler,” ASME J. Heat Transfer, vol. 135, pp. 111003, 2013. DOI: 10.1115/1.4024596.
  • M. Attalla, A. A. Abdel Samee, and N. N. Salem, “Experimental investigation of heat transfer of impinging jet on a roughened plate by a micro cubic shape,” Exp. Heat Transfer, pp. 1–20, 2019. DOI: 10.1080/08916152.2019.1614113.
  • K. Matsubara, M. Nakakura, S. Bellan, and K. Maezawa, “Loop thermosiphon thermal collector for waste heat recovery power generation,” Exp. Heat Transfer, vol. 32, pp. 201–218, 2019. DOI: 10.1080/08916152.2018.1491907.
  • M. H. M. Grooten and C. W. M. Van der Geld, “Predicting heat transfer in long R-134a filled thermosyphons,” ASME J. Heat Transfer, vol. 131, pp. 051501, 2009. DOI: 10.1115/1.3000969.
  • M. H. M. Grooten and C. W. M. van der Geld, “The effect of the angle of inclination on the operation limiting heat flux of long R-134a filled thermosyphons,” ASME J. Heat Transfer, vol. 132, pp. 051501, 2010. DOI: 10.1115/1.4000441.
  • C. A. Pappas, D. A. Jordan, and P. M. Norris, “Experimental investigation of the heat transfer performance of a hybrid cooling fin thermosyphon,” ASME J. Heat Transfer, vol. 136, pp. 104502, 2014. DOI: 10.1115/1.4028000.
  • J. Lee, J. Park, J. Kim, and S. M. You, “Flow visualization inside thermosyphon for measuring heat transfer limit,” ASME J. Heat Transfer, vol. 139, pp. 020911, 2017. DOI: 10.1115/1.4035581.
  • M. Amini, M. Yaghoubi, and R. A. Pishevar, “Analysis of frost visualization over a fin and tube heat exchanger by natural convection,” Exp. Heat Transfer, vol. 32, no. 1, pp. 36–50, 2019. DOI: 10.1080/08916152.2018.1473528.
  • E. Oguz and F. Ozkadi, “Experimental investigation of a stirling cycle cooled domestic refrigerator”, Proceedings of the International Refrigeration Conference at Purdue, paper # R19-3, West Lafayette, IN, 2017.
  • S. Welty and F. Cueva, “Energy efficient freezer installation using natural working fluids and a free piston stirling cooler”, Proceedings of the 6th Ibero-American Congress of Air Conditioning and Refrigeration, Buenos Aires, Argentina, 2011.
  • V. V. Kuznetsov, “Fundamental issues related to flow boiling and two-phase flow patterns in microchannels – experimental challenges and opportunities,” Heat Transfer Eng., pp. 1–14, 2018. DOI: 10.1080/01457632.2018.1442291.
  • Y. Y. Yan and T. F. Lin, “Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger,” ASME J. Heat Transfer, vol. 121, no. 1, pp. 118–127, 1999. DOI: 10.1007/BF02990233.
  • A. K. Solanki and R. Kumar, “Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature,” Exp. Heat Transfer, vol. 32, no. 1, pp. 69–84, 2019. DOI: 10.1080/08916152.2018.1485781.
  • H. J. Lee, D. Y. Liu, Y. Alyousef, and S. Yao, “Generalized two-phase pressure drop and heat transfer correlations in evaporative micro/minichannels,” ASME J. Heat Transfer, vol. 132, pp. 041004, 2010. DOI: 10.1115/1.4000861.
  • R. Maithani and A. Kumar, “Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube,” Exp. Heat Transfer, pp. 1–23, 2019. DOI: 10.1080/08916152.2019.1573863.
  • S. Yadav and S. K. Sahu, “Heat transfer and friction factor characteristics of annuli formed by the smooth inner tube and corrugated outer tube – an experimental study,” Exp. Heat Transfer, pp. 1–23, 2019. DOI: 10.1080/08916152.2019.1569179.
  • C. C. Wang, “A numerical method for thermally non-equilibrium condensing flow in a double-pipe condenser,” Appl. Therm. Eng., vol. 17, pp. 647–660, 1997. DOI: 10.1016/S1359-4311(96)00092-0.
  • S. Celik and E. C. Nsofor, “Studies on the flow-induced noise at the evaporator of a refrigerating system,” Appl. Therm. Eng., vol. 31, pp. 2485–2493, 2011. DOI: 10.1016/j.applthermaleng.2011.04.014.
  • A. J. Ghajar and C. C. Tang, “Void fraction and flow patterns of two-phase flow in upward and downward vertical and horizontal pipes,” Adv. Multiphase Flow Heat Transfer, vol. 4, pp. 231–267, 2010. DOI: 10.2174/978160805229511204010175.
  • R. W. Lockhart and R. C. Martinelli, “Proposed correlation of data for isothermal two-phase, two-component flow in pipes,” Chem. Eng. Prog., vol. 45, pp. 39–48, 1949.
  • Y. Taitel and A. E. Dukler, “A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow,” AIChE J., vol. 22, pp. 47–55, 1976. DOI: 10.1002/aic.690220105.
  • R. Gronnerud, “Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type of evaporators, part IV: two-phase flow resistance in boiling refrigerants,” Bull. Del’Inst. Int. Froid, vol. Annex 1, pp. 127–138, 1972. DOI: 10.1016/S0140-7007(01)00099-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.