Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 4
410
Views
15
CrossRef citations to date
0
Altmetric
Articles

Influence of System Pressure on Pool Boiling Regimes on A Microstructured Surface Compared to A Smooth Surface

, , , &
Pages 318-334 | Received 25 Feb 2019, Accepted 18 Jun 2019, Published online: 02 Jul 2019

References

  • V. Lakshminarayanan and N. Sriraam. “The effect of temperature on the reliability of electronic components,” 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 1–6.
  • T. T. Mattila, J. Li, and J. K. Kivilahti, “On the effects of temperature on the drop reliability of electronic component boards,” Microelectronics Reli, vol. 52, no. 1, pp.165–179, 2012. DOI: 10.1016/j.microrel.2011.07.085.
  • S. Fischer, E. M. Slomski, P. Stephan, and M. Oechsner, “Enhancement of nucleate boiling heat transfer by micro-structured chromium nitride surfaces,” J. Phys. Conf. Ser., vol. 395, pp. 12128, 2012.
  • K.-H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Appl. Phys. Lett., vol. 100, no. 24, pp.241603, 2012. DOI: 10.1063/1.4724190.
  • D. Cooke and S. G. Kandlikar, “Effect of open microchannel geometry on pool boiling enhancement,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp.1004–1013, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.010.
  • V. Dhir, “Nucleate and transition boiling heat transfer under pool and external flow conditions,” Int. J. Heat Fluid Flow., vol. 12, no. 4, pp.290–314, 1991. DOI: 10.1016/0142-727X(91)90018-Q.
  • G. Guglielmini, M. Misale, and C. Schenone, “Experiments on pool boiling of a dielectric fluid on extended surfaces,” Int. Communi. Heat. Mass Trans., vol. 23, no. 4, pp.451–462, 1996. DOI: 10.1016/0735-1933(96)00030-9.
  • K. N. Rainey, S. M. You, and S. Lee, “Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous surfaces in FC-72,” Int. J. Heat Mass Transf, vol. 125, no. 1, pp.75, 2003. DOI: 10.1115/1.1527890.
  • A. A. Watwe, A. Bar-Cohen, and A. McNeil, “Combined pressure and subcooling effects on pool boiling from a PPGA chip package,” in InterSociety Conference on Thermal Phenomena in Electronic Systems, I-THERM V, Orlando, FL, USA, May, 1996, pp. 284–291.
  • Z. Yao, Y.-W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci., vol. 50, no. 11, pp.2084–2090, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.009.
  • B. Shi, Y.-B. Wang, and K. Chen, “Pool boiling heat transfer enhancement with copper nanowire arrays,” App. Ther. Eng., vol. 75, pp. 115–121, 2015. DOI: 10.1016/j.applthermaleng.2014.09.040.
  • R. Chen, et al. “Nanowires for enhanced boiling heat transfer,” Nano Lett., vol. 9, no. 2, pp. 548–553, 2009.
  • Y. Im, Y. Joshi, C. Dietz, and S. Lee, “Enhanced boiling of a dielectric liquid on copper nanowire surfaces,” Int. J. Micro-Nano Scale Trans, vol. 1, no. 1, pp.79–96, 2010. DOI: 10.1260/1759-3093.1.1.79.
  • S. J. Thiagarajan, W. Wang, R. Yang, S. Narumanchi, and C. King. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings. 2010, pp. 819–828.
  • U. Kumar, S. Suresh, T. MR, and D. Babu, “Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72,” Appl Surf Sci., vol. 423, pp. 509–520, 2017. DOI: 10.1016/j.apsusc.2017.06.135.
  • K.-H. Chu, R. Enright, and E. N. Wang. “Microstructured Surfaces for Enhanced Pool Boiling Heat Transfer,” ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA, Nov. 2011, 679–685
  • L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” Int. J. Heat Mass Transf., vol. 71, pp. 189–196, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.068.
  • S. H. Kim, et al., “Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface,” Int. J. Heat Mass Transf., vol. 91, pp. 1140–1147, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.120.
  • D. E. Kim, D. I. Yu, S. C. Park, H. J. Kwak, and H. S. Ahn, “Critical heat flux triggering mechanism on micro-structured surfaces: coalesced bubble departure frequency and liquid furnishing capability,” Int. J. Heat Mass Transf., vol. 91, pp. 1237–1247, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.08.065.
  • A. S. Moita, E. Teodori, and A. Moreira, “Influence of surface topography in the boiling mechanisms,” Int. J. Heat Fluid Flow., vol. 52, pp. 50–63, 2015. DOI: 10.1016/j.ijheatfluidflow.2014.11.003.
  • N. S. Dhillon, J. Buongiorno, and K. K. Varanasi, ““Critical heat flux maxima during boiling crisis on textured surfaces,” (eng),” Nat. Commun., vol. 6, pp. 8247, 2015. DOI: 10.1038/ncomms9247.
  • K.-H. Chu, Y. Soo Joung, R. Enright, C. R. Buie, and E. N. Wang, “Hierarchically structured surfaces for boiling critical heat flux enhancement,” Appl. Phys. Lett., vol. 102, no. 15, pp.151602, 2013. DOI: 10.1063/1.4801811.
  • K.-H. Chu, Y. Zhu, N. Miljkovic, Y. Nam, R. Enright, E. N. Wang, “Enhanced boiling heat transfer with copper oxide hierarchical surfaces,” in Transducers & Eurosensors XXVII 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, 2013, pp. 2272–2275.
  • Q. Li, et al. “Enhanced Pool Boiling Performance on Micro-, Nano-, and Hybrid-Structured Surfaces,” ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA, Nov. 2011, 633–640
  • R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Chem., vol. 53, no. 9, pp.1466–1467, 1949. DOI: 10.1021/j150474a015.
  • S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” Int. J. Heat Mass Transf, vol. 123, no. 6, pp.1071, 2001. DOI: 10.1115/1.1409265.
  • J. M. Kim, S. C. Park, B. Kong, H.-B.-R. Lee, and H. S. Ahn, “Effect of porous graphene networks and micropillar arrays on boiling heat transfer performance,” Exper. Therm. Fluid Sci., vol. 93, pp. 153–164, 2018. DOI: 10.1016/j.expthermflusci.2017.12.029.
  • VDI Heat Atlas, 2nd. Berlin, Heidelberg: Springer, 2010.
  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exper. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI: 10.1016/j.expthermflusci.2015.03.023.
  • S. G. Liter and M. Kaviany, “Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment,” Int. J. Heat Mass Transf., vol. 44, no. 22, pp.4287–4311, 2001. DOI: 10.1016/S0017-9310(01)00084-9.
  • S. D. Park and I. C. Bang, “Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability,” Int. J. Heat Mass Transf., vol. 70, pp. 844–850, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.066.
  • H. S. Ahn, H. J. Jo, S. H. Kang, and M. H. Kim, “Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling,” Appl. Phys. Lett., vol. 98, no. 7, pp.71908, 2011. DOI: 10.1063/1.3555430.
  • H. D. Kim and M. H. Kim, “Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids,” Appl. Phys. Lett., vol. 91, no. 1, pp.14104, 2007. DOI: 10.1063/1.2754644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.