Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 4
159
Views
2
CrossRef citations to date
0
Altmetric
Articles

Convective boiling of R-410A in 5.0 and 7.0 mm outer diameter microfin tubes

Pages 355-373 | Received 01 Apr 2019, Accepted 04 Jul 2019, Published online: 15 Jul 2019

References

  • J. R. Thome, “Boiling of new refrigerants: A state-of-the-art review,” Int. J. Refrig., vol. 19, pp. 435–457, 1996. DOI: 10.1016/S0140-7007(96)00004-7.
  • J. Bogart and P. Thors, “In-tube evaporation and condensation of R-22 and R-410A with plain and internally enhanced tubes,” J. Enhanced Heat Transfer, vol. 6, pp. 37–50, 1999. DOI: 10.1615/JEnhHeatTransf.v6.i1.40.
  • N. Inoue, M. Goto, and S. G. Kandlikar, “Flow boiling heat transfer with binary and ternary mixtures in microfin tubes,” Advances in Enhanced Heat Transfer, ASME, HTD-Vol. 365/PID, vol. 4, pp. 23–33, 2000.
  • Y. Kim, K. Seo, and J. T. Chung, “Evaporation heat transfer characteristics of R-410A in 7.0 and 9.52 mm smooth/microfin tubes,” Int. J. Refrig., vol. 25, pp. 716–730, 2002. DOI: 10.1016/S0140-7007(01)00070-6.
  • M. H. Kim and J. S. Shin, “Condensation heat transfer of R-22 and R-410A in horizontal smooth and microfin tubes,” Int. J. Refrig., vol. 28, pp. 949–957, 2005. DOI: 10.1016/j.ijrefrig.2005.01.017.
  • H. Hu, G. Ding, and K. Wang, “Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7 mm straight microfin tube,” Int. J. Refrig., vol. 31, pp. 1081–1093, 2008. DOI: 10.1016/j.ijrefrig.2007.12.004.
  • G. Ding, H. Hu, X. Huang, B. Deng, and Y. Gao, “Experimental investigation and correlation of two-phase friction pressure drop of R410A-oil mixture flow boiling in a 5 mm microfin tube,” Int. J. Refrig., vol. 32, pp. 150–161, 2009. DOI: 10.1016/j.ijrefrig.2008.08.009.
  • A. Padovan, D. Del Col, and L. Rossetto, “Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures,” Appl. Thermal Eng., vol. 31, pp. 2814–3826, 2001.
  • Z. Wu, Y. Wu, B. Sunden, and W. Li, “Convective vaporization in microfin tubes of different geometries,” Exp. Thermal Fluid Sci., vol. 44, pp. 398–408, 2013. DOI: 10.1016/j.expthermflusci.2012.07.012.
  • N.-H. Kim, “Evaporation heat transfer and pressure drop of R-410A in a 5.0 mm O.D. smooth and microfin tube,” Int. J. Air-Cond. Refrig., vol. 23, pp. 1550004, 2015. DOI: 10.1142/S2010132515500042.
  • M. Houfuku, K. Suzuki, and K. Inui, “High performance, light weight thermofin tubes for air-conditioners using alternative refrigerants,” Hitachi Cable Review, vol. 20, pp. 97–100, 2001.
  • A. Cavallini, D. Del Col, and L. Rossetto, “Flow boiling inside microfin tubes: Prediction of the heat transfer coefficient,” Proc. ECI International Conference on Boiling Heat Transfer, Spoleto, Italy, 2006.
  • D. Jige, K. Sagawa, S. Iizuka, and N. Inoue, “Boiling heat transfer and flow characteristic of R32 inside a horizontal small-diameter microfin tube,” Int. J. Refrig., vol. 95, pp. 73–82, 2018. DOI: 10.1016/j.ijrefrig.2018.08.019.
  • A. Celen, A. Cebi, and A. S. Dalkilic, “Investigation of boiling heat transfer characteristics of R134a flowing in smooth and microfin tubes,” Int. Comm. Heat Mass Trans., vol. 93, pp. 21–33, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.03.006.
  • G. Righetti, G. A. Longo, C. Zilio, R. Asakasa, and S. Mancin, “R1233zd(E) flow boiling inside a 4.3 mm ID microfin tube,” Int. J. Refrig., vol. 91, pp. 69–79, 2018. DOI: 10.1016/j.ijrefrig.2018.04.020.
  • A. Daini, S. Mancin, and L. Rossetto, “R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube,” Int. J. Refrig., vol. 47, pp. 105–119, 2014. DOI: 10.1016/j.ijrefrig.2014.07.018.
  • A. Daini, S. Mancin, and L. Rossetto, “Flow boiling heat transfer of R1234yf inside a 3.4 mm ID microfin tube,” Exp. Thermal Fluid Sci., vol. 66, pp. 127–236, 2015. DOI: 10.1016/j.expthermflusci.2015.03.019.
  • A. K. Solanki and R. Kumar, “Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature,” Experimental Heat Transfer, vol. 32, pp. 69–84, 2019. DOI: 10.1080/08916152.2018.1485781.
  • N.-H. Kim, Personal Communication with LG Electronics, 2016.
  • E. E. Wilson, “A basis for rational design of heat transfer apparatus,” Trans. ASME, vol. 37, pp. 47–70, 1915.
  • S. J. Kline and F. A. McClintock, “The description of uncertainties in single sample experiments,” Mechanical Engineering, vol. 75, pp. 3–9, 1953.
  • L. Wojtan, T. Ursenbacher, and J. R. Thome, “Investigation of flow boiling in horizontal tubes: Part II – development of new heat transfer model for stratified-wavy, dryout and mist flow regimes,” Int. J. Heat Mass Transfer, vol. 48, pp. 2970–2985, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.013.
  • J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3rd ed. UK: Clarendon Press, Oxford, 1996.
  • S. G. Kandlikar, “A general correlation for two-phase boiling heat transfer coefficient inside horizontal and vertical tubes,” J. Heat Transfer, vol. 112, pp. 219–228, 1990. DOI: 10.1115/1.2910348.
  • K. E. Gungor and R. H. S. Winterton, “Simplified general correlations for saturated flow boiling and comparisons of correlations with data,” Can. J. Chem. Eng., vol. 65, pp. 148–156, 1987.
  • L. Friedel, “Improved pressure drop correlations for horizontal and vertical two-phase pipe flow,” 3R Int., vol. 18, pp. 485–492, 1979.
  • J. Moreno Quiben and J. R. Thome, “Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: New phenomenological model,” Int. J. Heat Fluid Flow, vol. 28, pp. 1060–1072, 2007. DOI: 10.1016/j.ijheatfluidflow.2007.01.004.
  • J. G. Collier, Engineering Data Book III. USA: Wolverine Tube, Inc., 2004.
  • P. Rollmann and K. Spindler, “A new flow pattern map for flow boiling in microfin tubes,” Int. J. Multiphase Flow, vol. 72, pp. 181–187, 2015. DOI: 10.1016/j.ijmultiphaseflow.2015.01.003.
  • A. Cavallini, D. Del Col., L. Doretti, G. A. Longo, and L. Rossetto, “Refrigerant vaporization inside enhanced tubes: A heat transfer model,” Heat and Technology, vol. 17, pp. 29–36, 1999.
  • S. Koyama, J. Yu, S. Momoki, T. Fujii, and H. Honda, “Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal microfin tube,” Proc. of Engineering Foundation Conference on Convective Flow Boiling, ASME, Banff, Canada, 1995.
  • J. R. Thome, N. Kattan, and D. Favrat, “Evaporation in microfin tubes: A generalized prediction model,” Proc. of Convective Flow and Pool Boiling Conf., Kloster Irsee, VII–4, 1997.
  • R. Yun, Y. Kim, K. Seo, and H. Y. Kim, “A generalized correlation for evaporation heat transfer of refrigerants in microfin tubes,” Int. J. Heat Mass Trans., vol. 45, pp. 2003–2010, 2002.
  • M. Goto, N. Inoue, and N. Ishiwatari, “Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes,” Int. J. Refrig., vol. 24, pp. 628–638, 2001. DOI: 10.1016/S0140-7007(00)00087-6.
  • L. J. Hamilton, M. A. Kedzierski, and M. P. Kaul, “Horizontal convective boiling of pure and mixed refrigerants within a microfin tube,” J. Enhanced Heat Transfer, vol. 15, pp. 211–226, 2008. DOI: 10.1615/JEnhHeatTransf.v15.i3.30.
  • L. M. Chamra and P. J. Mago, “Modeling of evaporation heat transfer of pure refrigerants and refrigerant mixtures in microfin tubes,” Proc. Of Institution on Mechanical Engineers, Part C: J. Mech. Eng. Sci., vol. 221, pp. 443–454, 2007.
  • O. Kido, M. Taniguchi, T. Taira, and H. Uehara, “Evaporation heat transfer of HCFC22 inside an internally grooved horizontal tube,” Proc. Of ASME/JSME Thermal Engineering Conference, vol. 2, pp. 323–330, 1995.
  • S. Mehedale, “A new heat transfer correlation for pure refrigerants and near-azeotropic refrigerant mixtures flow boiling within horizontal microfin tubes,” Int. J. Refrig., vol. 86, pp. 292–311, 2018. DOI: 10.1016/j.ijrefrig.2017.11.017.
  • C. S. Kuo and C. C. Wang, “Horizontal flow boiling of R22 and R407C in a 9.52 mm microfin tube,” Appl. Thermal Eng., vol. 16, pp. 719–731, 1996. DOI: 10.1016/1359-4311(95)00076-3.
  • A. Cavallini, D. Del Col, L. Doretti, G. A. Longo, and L. Rossetto, “Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes,” Heat and Technology, vol. 15, pp. 3–10, 1997.
  • J. Y. Choi, M. A. Kedzierski, and P. A. Domanski, “Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes,” Proc. of IIF-IIR Commission B1, Paderborn, Germany, B4, pp. 9–16, 2001.
  • T. A. Newell and R. K. Shah, “An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes,” Int. J. HVAC&R, vol. 7, pp. 125–153, 2001. DOI: 10.1080/10789669.2001.10391267.
  • E. P. Bandarra Filho, J. M. Saiz Jabardo, and P. E. Lopez Barbieri, “Convective boiling and pressure drop of refrigerant r-134a in horizontal smooth and microfin tubes,” Int. J. Refrig, vol. 27, pp. 895–903, 2004. DOI: 10.1016/j.ijrefrig.2004.04.014.
  • S. M. Zivi, “Estimation of steady-state steam void fraction by means of the principle of minimum entropy production,” J. Heat Transfer, vol. 68, pp. 247–252, 1964. DOI: 10.1115/1.3687113.
  • N.-H. Kim, “Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries,” J. Mech. Sci. Tech., vol. 29, pp. 3519–3530, 2015. DOI: 10.1007/s12206-015-0749-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.