Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 7
406
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Experimental inquisition of heat pipe: performance evaluation for different fluids

ORCID Icon, & ORCID Icon
Pages 668-682 | Received 27 Aug 2019, Accepted 06 Jan 2020, Published online: 13 Jan 2020

References

  • M. F. Chowdhury and U. I. Ahmed, “CPU cooling of desktop computer by parallel miniature heat pipes,” J. Mech. Eng., vol. 40, no. 2, pp. 104–109, Dec. 2009. DOI: 10.3329/jme.v40i2.5351.
  • R. Hopkins, A. Faghri, and D. Khrustalev, “Flat miniature heat pipes with micro capillary grooves,” J. Heat Transfer, vol. 121, no. 1, pp. 102–109, Feb. 1999. DOI: 10.1115/1.2825922.
  • D. Reay and A. Harvey, “The role of heat pipes in intensified unit operations,” Appl. Therm. Eng., vol. 57, no. 1–2, pp. 147–153, Aug. 2013. DOI: 10.1016/j.applthermaleng.2012.04.002.
  • F. L. Tan and C. P. Tso, “Cooling of mobile electronic devices using phase change materials,” Appl. Therm. Eng., vol. 24, pp. 159–169, Feb. 2004. DOI: 10.1016/j.applthermaleng.2003.09.005.
  • B. Zohuri, Heat Pipe Design and Technology: A Practical Approach. Boca Raton, FL, USA: CRC, 2011.
  • N. Hoyer, “Calculation of dryout and post-dryout heat transfer for tube geometry,” Int. J. Multiphase Flow, vol. 24, no. 2, pp. 319–334, Mar. 1998. DOI: 10.1016/S0301-9322(97)00057-8.
  • A. Borujerdi and M. Layeghi, “A review of concentric annular heat pipes,” Heat Transfer Eng., vol. 26, no. 6, pp. 45–58, Feb. 2007. DOI: 10.1080/01457630590950934.
  • S. M. Peyghambarzadeh, H. Hallaji, M. R. Bohloul, and N. Aslanzadeh, “Heat transfer and Marangoni flow in a circular heat pipe using self-rewetting fluids,” Exp. Heat Transfer, vol. 30, no. 4, pp. 218–234, Sep. 2017. DOI: 10.1016/S1359-4311(03)00159-5.
  • S. C. Wong, Y. C. Lin, and J. H. Liou, “Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone,” Int. J. Therm. Sci., vol. 52, pp. 154–160, Feb. 2012. DOI: 10.1016/j.ijthermalsci.2011.09.020.
  • G. M. Russo, L. Krambeck, F. B. Nishida, P. H. D. Santos, and T. A. Alves, “Thermal performance of thermosyphon for different working fluids,” Engenharia Térmica (Therm. Eng.), vol. 15, no. 1, pp. 3–8, Oct. 2018. DOI: 10.5380/reterm.v15i1.62150.
  • X. Yang, Y. Y. Yan, and D. Mullen, “Recent developments of lightweight, high performance heat pipes,” Appl. Therm. Eng., vol. 33, pp. 1–14, Feb. 2012. DOI: 10.1016/j.applthermaleng.2011.09.006.
  • S. Danabal and M. Annamalai, “Experimental studies on porous wick flat plate heat pipe,” presented at the International Refrigeration and Air Conditioning Conference, Purude, Indiana, July. 15, 2010.
  • A. A. Adoni et al., “Evaporation heat transfer coefficient in a capillary pumped loop and loop heat pipe for different working fluids,” Heat Transfer Eng., vol. 33, pp. 765–774, Dec. 2011. DOI: 10.1080/01457632.2011.640890.
  • M. G. Mwaba, X. Huang, and J. Gu, “Influence of wick characteristics on heat pipe performance,” Int. J. Energy Res., vol. 30, no. 7, pp. 489–499, Jan. 2006. DOI: 10.1002/er.1164.
  • R. Singh, A. Akbarzadeh, and M. Mochizuki, “Effect of wick characteristics on the thermal performance of the miniature loop heat pipe,” J. Heat Transfer, vol. 131, no. 8, pp. 082601, Jun. 2009. DOI: 10.1115/1.3109994.
  • C. Zhang, Y. Chen, M. Shi, and G. P. Peterson, “Optimization of heat pipe with axial “Ω”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA),” Appl. Therm. Eng, vol. 29, no. 16, pp. 3340–3345, Nov. 2009. DOI: 10.1016/j.applthermaleng.2009.05.008.
  • S. Lips, F. Lefevre, and J. Bonjour, “Nucleate boiling in a flat grooved heat pipe,” Int. J. Therm. Sci., vol. 48, no. 7, pp. 1273–1278, Jul. 2009. DOI: 10.1016/j.ijthermalsci.2008.11.011.
  • S. Lips, F. Lefevre, and J. Bonjour, “Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1243–1252, Jul. 2011. DOI: 10.1016/j.ijthermalsci.2011.02.008.
  • Y. Cao, M. Gao, J. E. Beam, and B. Donovan, “Experiments and analyses of flat miniature heat pipes,” J. Therophysics Heat Transfer, vol. 11, no. 2, pp. 158–168, May. 1997. DOI: 10.2514/2.6247.
  • S. Rittidech and S. Sangiamsuk, “Internal flow patterns on heat transfer performance of a closed-loop oscillating heat pipe with check valves,” Exp. Heat Transfer, vol. 25, no. 1, pp. 48–57, Jan. 2012. DOI: 10.1080/08916152.2011.559568.
  • C. W. Chan, E. Siqueiros, J. L. Chin, M. Royapoor, and A. P. Roskilly, “Heat utilisation technologies: A critical review of heat pipes,” Renewable Sustainable Energy Rev., vol. 50, pp. 615–627, Oct. 2015. DOI: 10.1016/j.rser.2015.05.028.
  • X. M. Zhang, “Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids,” Exp. Heat Transfer, vol. 17, no. 1, pp. 47–67, Jun. 2010. DOI: 10.1080/08916150490246546.
  • D. Wu and G. P. Peterson, “Investigation of the transient characteristics of a micro heat pipe,” J. Therophysics Heat Transfer, vol. 5, no. 2, pp. 129–134, May. 1991. DOI: 10.2514/3.239.
  • T. K. Salem, F. S. Khosroshahi, M. Arık, M. O. Hamdan, and M. Budakli, “Numerical and experimental analysis of a heat-pipe-embedded printed circuit board for solid state lighting applications,” Exp. Heat Transfer, vol. 32, no. 1, pp. 1–13, Nov. 2019. DOI: 10.1080/08916152.2017.1397818.
  • Y. H. Diao, S. Wang, C. Z. Li, Y. H. Zhao, and T. T. Zhu, “Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage,” Exp. Heat Transfer, vol. 30, no. 2, pp. 91–111, May. 2017. DOI: 10.1080/08916152.2016.1179355.
  • M. L. Rahman, T. Afrose, H. K. Tahmina, R. P. Rinky, and M. Ali, “Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios,” Proceedings of the 11th International Conference on Mechanical Engineering (ICME 2015), pp. 18–20, Dec 2015, Dhaka, Bangladesh, AIP Conference Proceedings 1754, 050015 (2016). DOI: 10.1063/1.4958406.
  • P. R. Mistry, F. M. Thakkar, S. De, and S. DasGupta, “Experimental validation of a two-dimensional model of the transient and steady-state characteristics of a wicked heat pipe,” Exp. Heat Transfer, vol. 23, no. 4, pp. 333–348, Sep. 2010. DOI: 10.1080/08916150903564804.
  • H. Jouhara and A. J. Robinson, “Experimental investigation of small diameter two-phase closed thermosyphon charged with water, FC-84, FC-77, FC-3283,” Appl. Therm. Eng., vol. 30, no. 2–3, pp. 201–211, Feb. 2010. DOI: 10.1016/j.applthermaleng.2009.08.007.
  • H. M. S. Hussein, M. A. Mohamad, and A. S. El-Asfouri, “Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector,” Renewable Energy, vol. 23, no. 3–4, pp. 525–535, Jul. 2001. DOI: 10.1016/S0960-1481(00)00149-X.
  • Hu et al., “Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe,” Appl. Therm. Eng., vol. 106, pp. 651–660, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.06.003.
  • Q. Guo, H. Guo, X. K. Yan, F. Ye, and C. F. Ma, “Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe,” Heat Transfer Eng., pp. 1–9, Aug. 2017. DOI: 10.1080/01457632.2017.1370325.
  • T. Tharayil, L. G. Asirvatham, C. F. M. Cassie, and S. Wongwises, “Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity – A comparative study,” Appl. Therm. Eng., vol. 122, pp. 685–696, Jul. 2017. DOI: 10.1016/j.applthermaleng.2017.05.007.
  • J. Lee, Y. Joo, and S. J. Kim, “Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes,” Int. J. Heat Mass Transfer, vol. 124, pp. 1172–1180, Sep. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.054.
  • A. A. Abdulshaheed, P. Wang, G. Huang, and C. Li, “High performance copper-water heat pipes with nanoengineeredevaporator sections,” Int. J. Heat Mass Transfer, vol. 133, pp. 474–486, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.114.
  • E. W. Washburn, National research council. International critical tables of numerical data, physics, chemistry and technology, 1930. Washington, DC: The National Academies Press. DOI: 10.17226/20230.
  • J. P. Holman, Experimental Methods for Engineers, 7th ed. New York: Publisher: McGraw-Hill, 2007.
  • S. Venkatachalapathy, G. Kumaresan, and S. Suresh, “Performance analysis of cylindrical heat pipe using nanofluids – an experimental study,” Int. J. Multiphase Flow, vol. 72, pp. 188–197, June. 2015. DOI: 10.1016/j.ijmultiphaseflow.2015.02.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.