Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 1
245
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effect of helical surface disc turbulator on thermal and friction characteristics of double pipe water to air heat exchanger

ORCID Icon &
Pages 51-67 | Received 15 Jul 2019, Accepted 08 Jan 2020, Published online: 20 Jan 2020

References

  • N. Budak, H. L. Yucel, and Z. Argunhan, “Experimental and numerical investigation of the effect of turbulator on heat transfer in a concentric-type heat exchanger,” Exp. Heat Transfer, vol. 29, no. 3, pp.322–336, 2016. DOI: 10.1080/08916152.2014.976723.
  • S. Yadav and S. K. Sahu, “Effect of helical surface disc turbulators on heat transfer and friction factor characteristics in the annuli of double pipe heat exchanger: an experimental study,” Chem.l Eng. Technol., vol. 46, pp. 1205–1213, 2019. (IF: 2.418). DOI:10.1002/ceat.201800251.
  • S. Yadav and S. K. Sahu, “Heat transfer and friction factor characteristics of annuli formed by the smooth inner tube and corrugated outer tube – an experimental study,” Exp. Heat Transfer, pp. 1–22, 2019. DOI: 10.1080/08916152.2019.1569179.
  • H. M. Ali, M. D. Azhar, M. Saleem, Q. S. Saeed, and A. Saieed, “Water based Mgo nanofluids for thermal management of car radiator,” J. Therm. Sci., vol. 19, no. 6, pp.2039–2048, 2015. DOI: 10.2298/TSCI150526130A.
  • H. M. Ali and W. Arshad, “Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 NANOFLUIDS,” Energ. Convers. Manage., vol. 106, pp. 793–803, 2015. DOI: 10.1016/j.enconman.2015.10.015.
  • H. M. Ali and W. Arshad, “Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids,” Int J Heat Mass Transf, vol. 106, pp. 465–472, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.061.
  • W. Arshad and H. M. Ali, “Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink with TiO2 nanofluid,” Int. J. Heat Mass Transfer, vol. 110, pp. 248–256, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.032.
  • M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: A critical review,” ‎Renew. Sustain. Energy Rev., vol. 103, pp. 556–592, 2019. DOI: 10.1016/j.rser.2018.12.057.
  • E. Nourafkan, G. Karimi, and J. Moradgholi, “Experimental study of laminar convective heat transfer and pressure drop of cuprous oxide/water nanofluid inside a circular tube,” Exp. Heat Transfer, vol. 28, no. 1, pp.58–68, 2015. DOI: 10.1080/08916152.2013.803178.
  • A. R. S. Suri, A. Kumar, and R. Maithani, “Experimental determination of enhancement of heat transfer in a multiple square perforated twisted tape inserts heat exchanger tube,” Exp. Heat Transfer, vol. 31, no. 2, pp.85–105, 2018. DOI: 10.1080/08916152.2017.1397814.
  • A. K. Solanki and R. Kumar, “Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature,” Exp. Heat Transfer, vol. 32, no. 1, pp.69–84, 2019. DOI: 10.1080/08916152.2018.1485781.
  • A. E. Zohir, M. A. Habib, and M. A. Nemitallah, “Heat transfer characteristics in a double-pipe heat exchanger equipped with coiled circular wires,” Exp. Heat Transfer, vol. 28, no. 6, pp.531–545, 2015. DOI: 10.1080/08916152.2014.915271.
  • S. Yadav, M. P. Paulraj, and S. K. Sahu, “Experimental investigation of heat transfer and friction factor characteristics using helical surface ring turbulators in an annuli of double pipe heat exchanger”, In Proceedings of ASME 2018 Power Conference collocated with the 12th Int. Conf. Energ. Sustainability ASME 2018 Nuclear Forum, Florida, USA Jun. 24–28, 2018, pp. V002T12A006. 10.1115%2Fpower2018-7231
  • S. Pourahmad, S. M. Pesteei, and M. Mehrabi, “The effect of geometrical characteristics of wavy strip turbulator and thermodynamic properties of fluid on exergy loss and heat transfer in a tube in tube heat exchanger,” Exp. Heat Transfer, vol. 32, no. 4, pp.393–409, 2019. DOI: 10.1080/08916152.2018.1526229.
  • S. Yadav, N. Anand, and S. K. Sahu, “Thermal performance in an annuli formed by smooth inner tube and outer corrugated tube for turbulent flow regime in the counter flow condition”, In Proceedings of the 24th National and 2nd Int. ISHMT-ASTFE Heat Mass Transfer Conf. (IHMTC-2017), Hyderabad India, PP 1651–1656, (Paper ID: IHMTC2017-09-0902). doi:10.1615/IHMTC-2017.2290
  • T. Alama, R. P. Saini, and J. S. Saini, “Heat and flow characteristics of air heater ducts provided with turbulators-A review,” ‎Renew. Sustain. Energy Rev., vol. 31, pp. 289–304, 2014. DOI: 10.1016/j.rser.2013.11.050.
  • S. Yadav and S. K. Sahu, “Heat transfer augmentation in double pipe water to air counter flow heat exchanger with helical surface disc turbulators,” Chem. Eng. Process., vol. 135, pp. 120–132, 2019. DOI: 10.1016/j.cep.2018.11.018.
  • S. Eiamsa-ard and P. Promvonge, “Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts,” Int J Heat Mass Transf, vol. 53, pp. 1364–1372, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.023.
  • S. Roy and S. K. Saha, “Thermal and friction characteristics of laminar flow through a circular duct having helical screw-tape with oblique teeth inserts and wire coil,” Exp. Therm. Fluid Sci., vol. 68, pp. 733–743, 2015. DOI: 10.1016/j.expthermflusci.2015.07.007.
  • M. Sheikholeslami, M. G. Bandpy, and D. D. Ganji, “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger,” Energ. Convers. Manage., vol. 118, pp. 75–87, 2016. DOI: 10.1016/j.enconman.2016.03.080.
  • K. Ruengpayungsak, et al., “Heat transfer evaluation of turbulent flows through gear-ring elements,” Appl. Therm. Eng., vol. 123, pp. 991–1005, 2017. DOI: 10.1016/j.applthermaleng.2017.05.108.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies,” Energy, vol. 116, no. 1, pp.341–352, 2016. DOI: 10.1016/j.energy.2016.09.120.
  • H. Karakaya and A. Durmus, “Heat transfer and exergy loss in conical spring turbulators,” Int J Heat Mass Transf, vol. 60, pp. 756–762, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.054.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators,” Energ. Convers. Manage., vol. 127, pp. 112–123, 2016. DOI: 10.1016/j.enconman.2016.08.090.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, “Experimental study on turbulent flow and heat transfer in an air to water heat exchanger using perforated circular-ring,” Exp. Therm. Fluid Sci., vol. 70, pp. 185–195, 2016. DOI: 10.1016/j.expthermflusci.2015.09.002.
  • S. Eiamsa-ard and P. Promvonge, “Experimental investigation of heat transfer and friction characteristics in a circular tube fitted with V-nozzle turbulators,” int. Commun. Heat Mass Transfer, vol. 33, pp. 591–600, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.022.
  • M. Sheikholeslami, D. D. Ganji, and M. Gorji-Bandpy, “Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger,” Appl. Therm. Eng., vol. 100, pp. 805–819, 2016. DOI: 10.1016/j.applthermaleng.2016.02.075.
  • V. Kongkaitpaiboon, K. Nanan, and S. Eiamsa-ard, “Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators,” Int. Commun. Heat Mass Transfer, vol. 37, pp. 568–574, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.12.016.
  • A. Kumar, S. Chamoli, and M. Kumar, “Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts,” Appl. Therm. Eng., vol. 100, pp. 227–236, 2016. DOI: 10.1016/j.applthermaleng.2016.01.081.
  • P. Promvonge and S. Eiamsa-ard, “Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators,” Int. Commun. Heat Mass Transfer, vol. 34, pp. 72–82, 2007. DOI: 10.1016/j.icheatmasstransfer.2006.08.003.
  • P. Promvonge and S. Eiamsa-ard, “Heat transfer in a circular tube fitted with free-spacing snail entry and conical-nozzle turbulators,” Int. Commun. Heat Mass Transfer, vol. 34, pp. 838–848, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.03.020.
  • C. Thianpong, K. Yongsiri, K. Nanan, and S. Eiamsa-ard, “Thermal performance evaluation of heat exchangers fitted with twisted-ring turbulators,” Int. Commun. Heat Mass Transfer, vol. 39, pp. 861–868, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.004.
  • P. Promvonge, “Thermal augmentation in circular tube with twisted tape and wire coil turbulators,” Energ. Convers. Manage., vol. 49, pp. 2949–2955, 2008. DOI: 10.1016/j.enconman.2008.06.022.
  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer. fourthed., John Wiley and Sons, 1996, pp. 419–481.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • ANSI/ASME, measurement uncertainty. PTC 19, 1-1985, 1986.
  • R. Datt, M. S. Bhist, A. D. Kotiyal, R. Maithani, and A. Kumar, “Development of new correlations for heat transfer and friction loss of solid ring with combined square wing twisted tape inserts heat exchanger tube,” Exp. Heat Transfer, vol. 32, no. 2, pp.179–200, 2019. DOI: 10.1080/08916152.2018.1505784.
  • A. S. Patil, S. S. Kore, and N. K. Sane, “Thermal performance of tube exchanger enhanced with hexagonal ring turbulators,” Exp. Heat Transfer, pp. 1–16, 2019. DOI: 10.1080/08916152.2019.1656302.
  • R. L. Webb and E. R. G. Eckert, “Application of rough surfaces to heat exchanger design,” Int. J. Heat Mass Transfer, vol. 15, pp. 1647–1658, 1972. DOI: 10.1016/0017-9310(72)90095-6.
  • R. L. Webb and M. J. Scott, “A parametric analysis of the performance of internally finned tubes for heat exchanger application,” ASME J. Heat Transfer, vol. 102, pp. 38–43, 1980. DOI: 10.1115/1.3244245.
  • E. F. Akyürek, K. Gelis, B. Sahin, and E. Manay, “Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger,” Results Phys., vol. 9, pp. 376–389, 2018. DOI: 10.1016/j.rinp.2018.02.067.
  • H. S. Dizaji and S. Jafarmadar, “Experiments on new arrangements of convex and concave corrugated tubes through a double-pipe heat exchanger,” Exp. Heat Transfer, vol. 29, no. 5, pp.577–592, 2016. DOI: 10.1080/08916152.2015.1046015.
  • M. C. S. Reddy and V. V. Rao, “Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts,” Int. Commun. Heat Mass Transfer, vol. 50, pp. 68–76, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.