Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 6
177
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Nanodiamond Colloids heat transfer behavior in electronics thermal management – an experimental study

, &
Pages 780-796 | Received 17 May 2021, Accepted 18 Jun 2021, Published online: 08 Jul 2021

References

  • E. Pourfarzad, K. Ghadiri, A. Behrangzade, and M. Ashjaee, “Experimental Investigation of heat transfer and pressure drop of alumina–water nano-fluid in a porous miniature heat sink,” Exp. Heat Transf., vol. 31, no. 6, pp. 495–512, 2018. DOI: 10.1080/08916152.2018.1451413.
  • M. Khoshvaght-Aliabadi, F. Rahimpour, O. Sartipzadeh, and S. Pazdar, “Heat transfer enhancement by combination of serpentine curves and nanofluid flow in microtube,” Exp. Heat Transf., vol. 30, no. 3, pp. 235–252, 2017. DOI: 10.1080/08916152.2016.1233149.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • J. Buongiorno et al., “A benchmark study on the thermal conductivity of nanofluids,” J. Appl. Phys., vol. 106, no. 9, pp. 094312, 2009. DOI: 10.1063/1.3245330.
  • W. Williams, J. Buongiorno, and L.-W. Hu, “Experimental investigation of turbulent convective heat transfer and pressure loss of Alumina/Water and Zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes,” J. Heat Transfer, vol. 130, no. 4, pp. 42412, 2008. DOI: 10.1115/1.2818775.
  • W. C. Williams, Experimental and Theoretical Investigation of transport phenomena in nanoparticle colloids (nanofluids), Dissertation, Massachusetts Institute of Technology, Cambridge, 2007.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd Ed., New York: Dover, 1954.
  • C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys., vol. 81, no. 10, pp. 6692–6699, 1997. DOI: 10.1063/1.365209.
  • A. Wlazlak, B. Zajaczkowski, M. Woluntarski, and M. H. Buschmann, “Influence of Graphene Oxide nanofluids and surfactant on thermal behaviour of the thermosyphon,” J. Therm. Anal. Calorim., vol. 136, no. 2, pp. 843–855, 2019. DOI: 10.1007/s10973-018-7632-x.
  • S. Simpson, A. Schelfhout, C. Golden, and S. Vafaei, “Nanofluid thermal conductivity and effective parameters,” Appl. Sci., vol. 9, no. 1, pp. 87, 2018. DOI: 10.3390/app9010087.
  • A. Sözen, M. Gürü, T. Menlik, U. Karakaya, and E. Çiftçi, “Experimental comparison of Triton X-100 and Sodium Dodecyl Benzene Sulfonate surfactants on thermal performance of TiO 2 –Deionized water nanofluid in a thermosiphon,” Exp. Heat Transf., vol. 31, no. 5, pp. 450–469, 2018. DOI: 10.1080/08916152.2018.1445673.
  • B. T. Branson, P. S. Beauchamp, J. C. Beam, C. M. Lukehart, and J. L. Davidson, “Nanodiamond nanofluids for enhanced thermal conductivity,” ACS Nano, vol. 7, no. 4, pp. 3183–3189, 2013. DOI: 10.1021/nn305664x.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: 10.1016/j.rser.2010.11.035.
  • M. Soltanimehr and M. Afrand, “Thermal Conductivity Enhancement of COOH-functionalized MWCNTs/Ethylene Glycol–water nanofluid for application in heating and cooling systems,” Appl. Therm. Eng., vol. 105, pp. 716–723, 2016. DOI:10.1016/j.applthermaleng.2016.03.089.
  • X. Yang and Z. Liu, “A kind of nanofluid consisting of surface-functionalized nanoparticles,” Nanoscale Res. Lett., vol. 5, no. 8, pp. 1324–1328, 2010. DOI: 10.1007/s11671-010-9646-6.
  • E. Álvarez-Regueiro, J. Vallejo, J. Fernández-Seara, J. Fernández, and L. Lugo, “Experimental convection heat transfer analysis of a nano-enhanced industrial coolant,” Nanomaterials, vol. 9, no. 2, pp. 267, 2019. DOI: 10.3390/nano9020267.
  • A. Krueger and D. Lang, “Functionality is key : recent progress in the surface modification of nanodiamond,” Adv. Funct. Mater., pp. 890–906, 2012.DOI: 10.1002/adfm.201102670.
  • G. Shukla and H. Aiyer, “Thermal conductivity enhancement of transformer oil using functionalized nanodiamonds,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 4, pp. 2185–2190, 2015. DOI: 10.1109/TDEI.2015.004678.
  • F. Mashali, et al., “Thermo-physical properties of diamond nanofluids : a review,” Int. J. Heat Mass Transf., vol. 129, pp. 1123–1135, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.10.033.
  • A. Krüger, Y. Liang, G. Jarre, and J. Stegk, “Surface functionalisation of detonation diamond suitable for biological applications,” J. Mater. Chem., vol. 16, no. 24, pp. 2322–2328, 2006. DOI: 10.1039/B601325B.
  • T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu, “The effect of Alumina/Water nanofluid particle size on thermal conductivity,” Appl. Therm. Eng., vol. 30, no. 14–15, pp. 2213–2218, 2010. DOI: 10.1016/j.applthermaleng.2010.05.036.
  • J. Philip, P. D. Shima, and B. Raj, “Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures,” Appl. Phys. Lett., vol. 91, no. 20, 2007. DOI:10.1063/1.2812699.
  • W. Evans, et al., “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transf., vol. 51, no. 5–6, pp. 1431–1438, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.10.017.
  • A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transf., vol. 54, no. 17–18, pp. 4051–4068, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.014.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 13–14, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • S. Torii and W.-J. Yang, “Heat transfer augmentation of aqueous suspensions of nanodiamonds in turbulent pipe flow,” J. Heat Transfer, vol. 131, no. 4, pp. 43203, 2009. DOI: 10.1115/1.3072923.
  • W. Duangthongsuk and S. Wongwises, “An experimental study on the heat transfer performance and Pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 334–344, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.024.
  • S. Hashimoto, K. Kurazono, and T. Yamauchi, “Anomalous enhancement of convective heat transfer with dispersed SiO2 particles in Ethylene Glycol/Water nanofluid,” Int. J. Heat Mass Transf., vol. 150, pp. 119302, 2020. DOI:10.1016/j.ijheatmasstransfer.2019.119302.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, New York: John Wiley & Sons, 2011.
  • F. Mashali, E. Languri, G. Mirshekari, J. Davidson, and D. Kerns, “Nanodiamond nanofluid microstructural and thermo-electrical characterization,” Int. Commun. Heat Mass Transf., vol. 101, pp. 82–88, 2019. DOI:10.1016/j.icheatmasstransfer.2019.01.007.
  • B. T. Branson, C. M. Lukehart, and J. L. Davidson, Materials comprising deaggregated diamond nanoparticles, U.S. Patent No. 8,703,665, April 22, 2014.
  • F. Mashali, et al., “Thermo-physical properties of diamond nanofluids: a review,” Int. J. Heat Mass Transf., pp. 129, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.033.
  • F. Mashali, E. M. Languri, G. Mirshekari, J. Davidson, and D. Kerns, Microstructural and thermal characterization of diamond nanofluids, In ASME 2018 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2018, pp. V08BT10A002–V08BT10A002. Fort Lauderdale, FL, USA. https://doi.org/10.1115/IMECE2018-87496.
  • F. Mashali, Deaggregated and functionalized nanodiamond fluids for thermal management. Thesis, Tennessee Technological University, Mechanical Engineering Dept., Cookeville, 2019.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • F. Mashali, et al., Characterization and heat transfer analysis of diamond nanofluids, In Proceeding of 3rd Thermal and Fluids Engineering Conference (TFEC), Begellhouse, Connecticut, 2018, pp. 1617–1621. https://doi.org/10.1615/TFEC2018.mnh.024266.
  • F. Mashali, E. M. Languri, J. Davidson, and D. Kerns, “Diamond nanofluids: microstructural analysis and heat transfer study,” Heat Transf. Eng., pp. 1–13, 2020. DOI: 10.1080/01457632.2019.1707388.
  • N. H. Chen, “An explicit equation for friction factor in pipe,” Ind. Eng. Chem. Fundam., vol. 18, no. 3, pp.296–297, 1979. DOI: 10.1021/i160071a019.
  • X. Fang, Y. Xu, and Z. Zhou, “New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations,” Nucl. Eng. Des., vol. 241, no. 3, pp. 897–902, 2011. DOI: 10.1016/j.nucengdes.2010.12.019.
  • J. P. Holman and W. J. Gajda, Experimental Methods for Engineers, Vol. 2, New York:McGraw-Hill, 2001.
  • H. Li, et al., “Experimental investigation of thermal conductivity and viscosity of Ethylene Glycol Based ZnO nanofluids,” Appl. Therm. Eng., vol. 88, pp. 363–368, 2015. DOI:10.1016/j.applthermaleng.2014.10.071.
  • M. Yeganeh, et al., “Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water,” Int. J. Heat Mass Transf., vol. 53, no. 15–16, pp. 3186–3192, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.03.008.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, pp. 359–368, 1976.
  • C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1501–1506, 2007. DOI: 10.1016/j.applthermaleng.2006.09.028.
  • Y. Hwang, et al., “Production and dispersion stability of nanoparticles in nanofluids,” Powder Technol., vol. 186, no. 2, pp. 145–153, 2008. DOI: 10.1016/j.powtec.2007.11.020.
  • K. S. Hwang, S. P. Jang, and S. U. S. Choi, “Flow and convective heat transfer characteristics of Water-Based Al2O3 nanofluids in fully developed laminar flow regime,” Int. J. Heat Mass Transf., vol. 52, no. 1–2, pp. 193–199, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.032.
  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J. Heat Transfer, vol. 125, no. February, pp. 151–155, 2003. DOI: 10.1115/1.1532008.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with Submicron Metallic Oxide particles,” Exp. Heat Transf. An Int. J., vol. 11, no. 2, pp.151–170, 1998. DOI: 10.1080/08916159808946559.
  • P. Keblinski, S. Phillpot, S. U. Choi, and J. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transf., vol. 45, no. 4, pp. 855–863, 2002. DOI: 10.1016/S0017-9310(01)00175-2.
  • M. Attalla and H. M. Maghrabie, “An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al 2 O 3 /water nanofluid,” Exp. Heat Transf., vol. 33, no. 3, pp. 261–281, 2020. DOI: 10.1080/08916152.2019.1625469.
  • M. Khoshvaght-Aliabadi, S. Deldar, and S. M. Hassani, “Effects of pin-fins geometry and nanofluid on the performance of a pin-fin miniature heat sink (PFMHS),” Int. J. Mech. Sci., vol. 148, pp. 442–458, 2018. DOI: 10.1016/j.ijmecsci.2018.09.019.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, S. H. Mazloumi, and M. Nekoei, “Effects of nooks configuration on hydrothermal performance of zigzag channels for nanofluid-cooled microelectronic heat sink,” Microelectron. Reliab., vol. 79, pp. 153–165, 2017. DOI: 10.1016/j.microrel.2017.10.024.
  • S. M. Hassani, M. Khoshvaght-Aliabadi, and S. H. Mazloumi, “Influence of chevron fin interruption on thermo-fluidic transport characteristics of nanofluid-cooled electronic heat sink,” Chem. Eng. Sci., vol. 191, pp. 436–447, 2018. DOI: 10.1016/j.ces.2018.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.