Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 6
767
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the heat transfer enhancement in a rectangular channel with curved winglets

, ORCID Icon &
Pages 797-817 | Received 18 Mar 2021, Accepted 30 Jun 2021, Published online: 12 Jul 2021

References

  • Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals and Applications, Fifth ed. McGraw Hill, 2011.
  • R. Maithani, A. Silori, J. Rana, and S. Chamoli, “Numerical analysis of heat transfer and fluid flow of a wavy delta winglets in a rectangular duct,” Therm. Sci. Eng. Prog., vol. 2, pp. 15–25, 2017. DOI: 10.1016/j.tsep.2017.04.002.
  • A. H. Altun, M. Gürdal, and A. Berber, “Effects of sinusoidal strip element with different amplitudes on heat transfer and flow characteristics of circular channels,” Heat Transf. Res., vol. 50, pp. 6, 2019. DOI: 10.1615/HeatTransRes.2018025038.
  • A. H. Altun, M. Gurdal, and A. Berber, “Effects of sinusoidal turbulator in cylindrical channel on heat transfer and flow characteristics,” Maejo Int. J. Sci. Technol., vol. 14, pp. 27–42, 2020.
  • A. Berber, M. Gürdal, and K. Bağırsakçı, “Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1793826.
  • A. Berber, K. Bagirsakci, and M. Gurdal, “Investigation of effects on heat transfer and flow characteristics of Cr-Ni alloy and aluminum pins placed in AISI 304 tube,” Therm. Sci., vol. 24, no. 3 Part B, pp. 1999–2011, 2020.
  • A. Phila, S. Eiamsa-ard, and C. Thianpong, “Thermal performance evaluation of a channel installed with inclined-baffle turbulators,” Arab. J. Sci. Eng., vol. 45, no. 2, pp.609–621, 2020. DOI: 10.1007/s13369-019-04097-x.
  • P. Promvonge and S. Skullong, “Thermal characteristics in solar air duct with V-shaped flapped-baffles and chamfered-grooves,” Int. J. Heat Mass Transf., vol. 172, pp. 121220, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121220.
  • M. Fiebig, “Embedded vortices in internal flow: heat transfer and pressure loss enhancement,” Int. J. Heat Fluid Flow, vol. 16, no. 5, pp.376–388, 1995. DOI: 10.1016/0142-727X(95)00043-P.
  • G. Lu and G. Zhou, “Numerical simulation on performances of plane and curved winglet--pair vortex generators in a rectangular channel and field synergy analysis,” Int. J. Therm. Sci., vol. 109, pp. 323–333, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.024.
  • A. Abdollahi and M. Shams, “Optimization of shape and angle of attack of winglet vortex generator in a rectangular channel for heat transfer enhancement,” Appl. Therm. Eng., vol. 81, pp. 376–387, 2015. DOI: 10.1016/j.applthermaleng.2015.01.044.
  • M. Khoshvaght-Aliabadi, S. Zangouei, and F. Hormozi, “Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation,” Int. J. Therm. Sci., vol. 88, pp. 180–192, 2015. DOI: 10.1016/j.ijthermalsci.2014.10.001.
  • A. Khanjian, C. Habchi, S. Russeil, D. Bougeard, and T. Lemenand, “Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow,” Int. J. Therm. Sci., vol. 114, pp. 1–14, 2017. DOI: 10.1016/j.ijthermalsci.2016.12.010.
  • Q. Zhang, L.-B. Wang, and Y.-H. Zhang, “The mechanism of heat transfer enhancement using longitudinal vortex generators in a laminar channel flow with uniform wall temperature,” Int. J. Therm. Sci., vol. 117, pp. 26–43, 2017. DOI: 10.1016/j.ijthermalsci.2017.03.003.
  • S. Tiggelbeck, N. K. Mitra, and M. Fiebig, “Comparison of wing-type vortex generators for heat transfer enhancement in channel flows,” 1994. DOI: 10.1115/1.2911462.
  • M. Oneissi, C. Habchi, S. Russeil, D. Bougeard, and T. Lemenand, “Novel design of delta winglet pair vortex generator for heat transfer enhancement,” Int. J. Therm. Sci., vol. 109, pp. 1–9, 2016. DOI: 10.1016/j.ijthermalsci.2016.05.025.
  • Y. Lei, F. Zheng, C. Song, and Y. Lyu, “Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators,” Int. J. Heat Mass Transf., vol. 111, pp. 299–311, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.101.
  • T. Lemenand, C. Habchi, D. Della Valle, and H. Peerhossaini, “Vorticity and convective heat transfer downstream of a vortex generator,” Int. J. Therm. Sci., vol. 125, pp. 342–349, 2018. DOI: 10.1016/j.ijthermalsci.2017.11.021.
  • C. Habchi, et al.,“Enhancing heat transfer in vortex generator-type multifunctional heat exchangers,” Appl. Therm. Eng., vol. 38, pp. 14–25, 2012. DOI: 10.1016/j.applthermaleng.2012.01.020.
  • P. Promvonge, C. Khanoknaiyakarn, S. Kwankaomeng, and C. Thianpong, “Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet,” Int. Commun. Heat Mass Transf., vol. 38, no. 6, pp.749–756, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.014.
  • G. Zhou and Q. Ye, “Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators,” Appl. Therm. Eng., vol. 37, pp. 241–248, 2012. DOI: 10.1016/j.applthermaleng.2011.11.024.
  • T. Chompookham, C. Thianpong, S. Kwankaomeng, and P. Promvonge, “Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators,” Int. Commun. Heat Mass Transf., vol. 37, no. 2, pp.163–169, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.09.012.
  • P. Promvonge and S. Skullong, “Enhanced heat transfer in rectangular duct with punched winglets,” Chinese J. Chem. Eng., vol. 28, no. 3, pp.660–671, 2020. DOI: 10.1016/j.cjche.2019.09.012.
  • K. Song, et al., “Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 82, pp. 8–18, 2017. DOI: 10.1016/j.expthermflusci.2016.11.002.
  • C. Luo, S. Wu, K. Song, L. Hua, and L. Wang, “Thermo-hydraulic performance optimization of wavy fin heat exchanger by combining delta winglet vortex generators,” Appl. Therm. Eng., vol. 163, pp. 114343, 2019. DOI: 10.1016/j.applthermaleng.2019.114343.
  • M. Awais and A. A. Bhuiyan, “Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): a parametric study,” Int. J. Therm. Sci., vol. 140, pp. 154–166, 2019. DOI: 10.1016/j.ijthermalsci.2019.02.041.
  • C. Min, C. Qi, X. Kong, and J. Dong, “Experimental study of rectangular channel with modified rectangular longitudinal vortex generators,” Int. J. Heat Mass Transf., vol. 53, no. 15–16, pp.3023–3029, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.03.026.
  • V. Nandana and U. Janoske, “Numerical study on the enhancement of heat transfer performance in a rectangular duct with new winglet shapes,” Therm. Sci. Eng. Prog., vol. 6, pp. 95–103, 2018. DOI: 10.1016/j.tsep.2018.03.005.
  • J. S. Sawhney, R. Maithani, and S. Chamoli, “Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets,” Appl. Therm. Eng., vol. 117, pp. 740–751, 2017. DOI: 10.1016/j.applthermaleng.2017.01.113.
  • H. Gesell, V. Nandana, and U. Janoske, “Numerical study on the heat transfer performance and efficiency in a rectangular duct with new winglet shapes in turbulent flow,” Therm. Sci. Eng. Prog., vol. 17, pp. 100490, 2020. DOI: 10.1016/j.tsep.2020.100490.
  • H. Liu, C. Fan, Y. He, and D. S. Nobes, “Heat transfer and flow characteristics in a rectangular channel with combined delta winglet inserts,” Int. J. Heat Mass Transf., vol. 134, pp. 149–165, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.004.
  • A. T. Wijayanta, T. Istanto, K. Kariya, and A. Miyara, “Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles,” Exp. Therm. Fluid Sci., vol. 87, pp. 141–148, 2017. DOI:10.1016/j.expthermflusci.2017.05.002.
  • Z. Dong, P. Liu, H. Xiao, Z. Liu, and W. Liu, “A study on heat transfer enhancement for solar air heaters with ripple surface,” Renew. Energy, vol. 172, pp. 477–487, 2021. DOI: 10.1016/j.renene.2021.03.042.
  • H. Ke, et al. “Thermal-hydraulic performance and optimization of attack angle of delta winglets in plain and wavy finned-tube heat exchangers,” Appl. Therm. Eng., vol. 150, pp. 1054–1065, 2019. DOI: 10.1016/j.applthermaleng.2019.01.083.
  • H. Naik, S. Harikrishnan, and S. Tiwari, “Numerical investigations on heat transfer characteristics of curved rectangular winglet placed in a channel,” Int. J. Therm. Sci., vol. 129, no. March, pp. 489–503, 2018. DOI: 10.1016/j.ijthermalsci.2018.03.028.
  • L.-T. Tian, Y.-L. He, Y.-G. Lei, and W.-Q. Tao, “Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis,” Int. Commun. Heat Mass Transf., vol. 36, no. 2, pp.111–120, 2009. DOI: 10.1016/j.icheatmasstransfer.2008.10.018.
  • S. Ferrouillat, P. Tochon, C. Garnier, and H. Peerhossaini, “Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity,” Appl. Therm. Eng., vol. 26, no. 16, pp.1820–1829, 2006. DOI: 10.1016/j.applthermaleng.2006.02.002.
  • P. Saha, G. Biswas, and S. Sarkar, “Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger--A synergy based analysis,” Int. J. Heat Mass Transf., vol. 74, pp. 292–305, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.015.
  • J. X. Zhu, N. K. Mitra, and M. Fiebig, “Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flows,” Int. J. Heat Mass Transf., vol. 36, no. 9, pp.2339–2347, 1993. DOI: 10.1016/S0017-9310(05)80118-8.
  • G. Biswas, H. Chattopadhyay, and A. Sinha, “Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators,” Heat Transf. Eng., vol. 33, no. 4–5, pp.406–424, 2012. DOI: 10.1080/01457632.2012.614150.
  • A. Kumar and A. Layek, “Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs,” Exp. Heat Transf., pp. 1–19, 2020. DOI: 10.1080/08916152.2020.1838670.
  • A. T. Wijayanta, M. Aziz, K. Kariya, and A. Miyara, “Numerical study of heat transfer enhancement of internal flow using double-sided delta-winglet tape insert,” Energies, vol. 11, no. 11, pp.3170, 2018. DOI: 10.3390/en11113170.
  • S. Caliskan, A. Dogan, and U. R. Sahin, “Effect of new punched vortex generators in a rectangular channel on heat transfer using Taguchi method,” Exp. Heat Transf., pp. 1–26, 2021. DOI: 10.1080/08916152.2021.1926597.
  • Y. Effendi, A. Prayogo, M. D. Syaiful, and E. Yohana, “Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel,” Exp. Heat Transf., pp. 1–24, 2021. DOI: 10.1080/08916152.2021.1919245.
  • W. Jin, et al., “Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel,” Int. J. Therm. Sci., vol. 161, pp. 106758, 2021. DOI: 10.1016/j.ijthermalsci.2020.106758.
  • J. P. Holman, Heat Transfer. New York, USA: McGrawHill, 2002.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments,” ASME Mech. Eng., vol. 75, 1953.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2011.
  • R. B. Abernethy, R. P. Benedict, and R. B. Dowdell, “ASME measurement uncertainty,” 1985. doi: 10.1115/1.3242450.
  • A. T. Wijayanta, I. Yaningsih, W. E. Juwana, M. Aziz, and T. Miyazaki, “Effect of wing-pitch ratio of double-sided delta-wing tape insert on the improvement of convective heat transfer,” Int. J. Therm. Sci., vol. 151, pp. 106261, 2020. DOI: 10.1016/j.ijthermalsci.2020.106261.
  • L. Kirkup and R. B. Frenkel. An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement). Cambridge University Press, 2006.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” Int. J. Heat Mass Transf., vol. 24, no. 4, pp.715–726, 1981. DOI: 10.1016/0017-9310(81)90015-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.