Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 6
187
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Parametric optimization of impinging air jet on hemispherical protrusion of a solar thermal collector

, , &
Pages 786-807 | Received 22 Mar 2022, Accepted 05 May 2022, Published online: 18 May 2022

References

  • A. S. Yadav, et al., “Enhanced solar thermal air heater: a numerical investigation,” Mater. Today Proc., vol. 47, pp. 2777–2783, 2021. DOI: 10.1016/j.matpr.2021.03.385.
  • B. N. Prasad and J. S. Saini, “Optimal thermohydraulic performance,” Sol. Energy., vol. 47, no. 2, pp.91–96, 1991. DOI: 10.1016/0038-092X(91)90039-Y.
  • R. Maithani and J. S. Saini, “Heat transfer and fluid flow behaviour of a rectangular duct roughened with V-ribs with symmetrical gaps,” Int. J. Ambient Energy., vol. 38, no. 4, pp. 347–355, 2017. DOI: 10.1080/01430750.2015.1100681.
  • S. Sharma, A. Kumar, and R. Maithani, “Influence of twisted tape with collective protruded rib parameters of thermal–hydraulic performance of A l 2 O 3 - H 2 O nanofluid flow in heat exchanger tube,” Mater. Today Proc., vol. 50, no. xxxx, pp. 1129–1133, 2022. DOI: 10.1016/j.matpr.2021.08.021.
  • J. Wang, G. G. Hirs, and P. Rollmann, “Performance of a new gas to gas heat exchanger with strip fin,” Energy Convers. Manag., vol. 40, no. 15, pp. 1743–1751, 1999. DOI: 10.1016/S0196-8904(99)00067-9.
  • R. Wiksten and M. El Haj Assad, “Heat and mass transfer analysis of a wavy fin-and-tube heat exchanger under fully and partially wet surface conditions,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 349–355, 2010. DOI: 10.1016/j.ijthermalsci.2009.07.022.
  • V. Choudhary, M. Kumar, and A. K. Patil, “Experimental investigation of enhanced performance of pin fin heat sink with wings,” Appl. Therm. Eng., vol. 155, no. April, pp. 546–562, 2019. DOI: 10.1016/j.applthermaleng.2019.03.139.
  • Y. Liu, X. Yang, J. Li, and X. Zhao, “Energy savings of hybrid dew-point evaporative cooler and micro-channel separated heat pipe cooling systems for computer data centers,” Energy., vol. 163, pp. 629–640, 2018. DOI: 10.1016/j.energy.2018.07.172.
  • R. Maithani and J. S. Saini, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps,” Exp. Therm. Fluid Sci., vol. 70, pp. 220–227, 2016. DOI: 10.1016/j.expthermflusci.2015.09.010.
  • A. S. Yadav and S. K. Sharma, “Numerical Simulation of Ribbed Solar Air Heater,“ in Advances in Fluid and Thermal Engineering, 2021, pp. 549–558. doi:10.1007/978-981-16-0159-0_49.
  • R. Prasad, A. S. Yadav, N. K. Singh, and D. Johari. “Heat transfer and friction characteristics of an artificially roughened solar air heater,“ Advances in Fluid and Thermal Engineering , 2019, pp. 613–626. doi:10.1007/978-981-13-6416-7_57.
  • S. Sharma, R. K. Das, and K. Kulkarni, “Experimental analysis and thermal management of solar air heater roughened with sine wave baffles,” Proc. Inst. Mech. Eng. Part A J. Power Energy., 2022. DOI: 10.1177/09576509221092906.
  • S. Chamoli and N. S. Thakur, “Heat transfer enhancement in solar air heater with V-shaped perforated baffles,” J. Renew. Sustain. Energy., vol. 5, no. 2, pp. 23122, 2013. DOI: 10.1063/1.4798411.
  • J. S. Sawhney, R. Maithani, and S. Chamoli, “Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets,” Appl. Therm. Eng., vol. 117, pp. 740–751, 2017. DOI: 10.1016/j.applthermaleng.2017.01.113.
  • R. Maithani, S. Chamoli, A. Kumar, and A. Gupta, “Solar air heater duct roughened with wavy delta winglets: correlations development and parametric optimization,” Heat Mass Transf. Und Stoffuebertragung., vol. 55, no. 12, pp. 3473–3491, 2019. DOI: 10.1007/s00231-019-02651-9.
  • M. Goodro, J. Park, P. Ligrani, M. Fox, and H. K. Moon, “Effects of hole spacing on spatially-resolved jet array impingement heat transfer,” Int. J. Heat Mass Transf., vol. 51, no. 25–26, pp. 6243–6253, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.05.004.
  • R. Nadda, A. Kumar, and R. Maithani, “Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: a review,” Renew. Sustain. Energy Rev., vol. 93, no. May, pp. 331–353, 2018. DOI: 10.1016/j.rser.2018.05.025.
  • R. Maithani, A. Kumar, G. Raghav, M. Nagpal, and B. Kumar, “Thermal analysis of jet impingement on hemispherical protrusion on heated surface,” Exp. Heat Transf., vol. 34, no. 7, pp. 662–677, 2020. DOI: 10.1080/08916152.2020.1808117.
  • D. M. Kercher and W. Tabakoff, “Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air,” J. Eng. Gas Turbines Power., vol. 92, no. 1, pp.73–82, 1970. DOI: 10.1115/1.3445306.
  • R. J. Goldstein and W. S. Seol, “Heat transfer to a row of impinging circular air jets including the effect of entrainment,” Int. J. Heat Mass Transf., vol. 34, no. 8, pp. 2133–2147, 1991. DOI: 10.1016/0017-9310(91)90223-2.
  • M. O. Annerfeldt, J. L. Persson, and T. Torisson, “Experimental investigation of impingement cooling with turbulators or surface enlarging elements,” Proceedings of the ASME Turbo Expo., vol. 3, 2001, DOI: 10.1115/2001-GT-0149.
  • Y. Xing, S. Spring, and B. Weigand, “Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1293–1307, 2011. DOI: 10.1016/j.ijthermalsci.2010.11.008.
  • R. Chauhan and N. S. Thakur, “Heat transfer and friction factor correlations for impinging jet solar air heater,” Exp. Therm. Fluid Sci., vol. 44, pp. 760–767, 2013. DOI:10.1016/j.expthermflusci.2012.09.019.
  • R. Chauhan and N. S. Thakur, “Investigation of the thermohydraulic performance of impinging jet solar air heater,” Energy., vol. 68, pp. 255–261, 2014. DOI:10.1016/j.energy.2014.02.059.
  • R. K. Nayak and S. N. Singh, “Effect of geometrical aspects on the performance of jet plate solar air heater,” Sol. Energy., vol. 137, pp. 434–440, 2016. DOI:10.1016/j.solener.2016.08.024.
  • M. Zukowski, “Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater,” Appl. Energy., vol. 142, pp. 10–20, 2015. DOI:10.1016/j.apenergy.2014.12.052.
  • D. S. Negi and A. Pattamatta, “Profile shape optimization in multi-jet impingement cooling of dimpled topologies for local heat transfer enhancement,” Heat Mass Transf. Und Stoffuebertragung., vol. 51, no. 4, pp. 451–464, 2015. DOI: 10.1007/s00231-014-1420-3.
  • R. Chauhan, T. Singh, N. S. Thakur, and A. Patnaik, “Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method,” Renew. Energy., vol. 99, pp. 118–126, 2016. DOI:10.1016/j.renene.2016.06.046.
  • T. Rajaseenivasan, S. Ravi Prasanth, M. Salamon Antony, and K. Srithar, “Experimental investigation on the performance of an impinging jet solar air heater,” Alexandria Eng. J., vol. 56, no. 1, pp. 63–69, 2017. DOI: 10.1016/j.aej.2016.09.004.
  • R. Nadda, A. Kumar, R. Maithani, and R. Kumar, “Investigation of thermal and hydrodynamic performance of impingement jets solar air passage with protrusion with combination arc obstacle on the heated plate,” Exp. Heat Transf., 2017. DOI: 10.1080/08916152.2017.1405102.
  • M. M. Matheswaran, T. V. Arjunan, and D. Somasundaram, “Analytical investigation of exergetic performance on jet impingement solar air heater with multiple arc protrusion obstacles,” J. Therm. Anal. Calorim., vol. 137, no. 1, pp. 253–266, 2019. DOI: 10.1007/s10973-018-7926-z.
  • N. Kumar, et al., “Effect of circular inside conical ring obstacles on heat transfer and friction characteristics of round jets impingement solar air rectangular passage,” Int. J. Green Energy., vol. 16, no. 14, pp. 1091–1104, 2019. DOI: 10.1080/15435075.2019.1653877.
  • N. Kumar, A. Kumar, and R. Maithani, “Development of new correlations for heat transfer and pressure loss due to internal conical ring obstacles in an impinging jet solar air heater passage,” Therm. Sci. Eng. Prog., vol. 17, 2020. DOI: 10.1016/j.tsep.2020.100493.
  • R. Moshery, T. Y. Chai, K. Sopian, A. Fudholi, and A. H. A. Al-Waeli, “Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate”, Sol. Energy., vol. 214, no. December, pp. 355–366, 2020. 2021. DOI: 10.1016/j.solener.2020.11.059.
  • M. Salman, M. H. Park, R. Chauhan, and S. C. Kim, “Experimental analysis of single loop solar heat collector with jet impingement over indented dimples,” Renew. Energy., vol. 169, pp. 618–628, 2021. DOI:10.1016/j.renene.2021.01.043.
  • N. Kumar, A. Kumar, and R. Maithani, “Development of new correlations for heat transfer and pressure loss due to internal conical ring obstacles in an impinging jet solar air heater passage,” Therm. Sci. Eng. Prog., vol. 17, no. February, pp. 100493, 2020. DOI: 10.1016/j.tsep.2020.100493.
  • A. M. Aboghrara, et al., “Performance analysis of solar air heater with jet impingement on corrugated absorber plate,” Case Stud. Therm. Eng., vol. 10, pp. 111–120, 2017. DOI:10.1016/j.csite.2017.04.002.
  • M. Salman, R. Chauhan, and S. Chul, “Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface,” Renew. Energy., vol. 179, pp. 918–928, 2021. DOI:10.1016/j.renene.2021.07.116.
  • R. Maithani, S. Sharma, and A. Kumar, “Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater,” Renew. Energy., vol. 179, pp. 84–95, 2021. DOI:10.1016/j.renene.2021.07.013.
  • A. K. Goel, S. N. Singh, and B. N. Prasad, “Performance investigation and parametric optimization of an eco-friendly sustainable design solar air heater IET Renewable Power Generation, vol.15, no. March, pp. 2645–2656, 2021. DOI: 10.1049/rpg2.12188.
  • H. Hassan, M. S. Yousef, and S. Abo-elfadl, “Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios”, Sustain. Energy Technol. Assessments., vol. 43, no. November, pp. 100936, 2020. 2021. DOI: 10.1016/j.seta.2020.100936.
  • American Society of Heating, Refrigerating, and Air-Conditioning Engineers, ASHRAE Standards, Methods of Testing to Determine the Thermal Performance of Solar Collectors. New York: ASHRAE, 1977.
  • A. Cortés and R. Piacentini, “Improvement of the efficiency of a bare solar collector by means of turbulence promoters,” Appl. Energy., vol. 36, no. 4, pp. 253–261, 1990. DOI: 10.1016/0306-2619(90)90001-T.
  • M. M. Matheswaran, T. V. Arjunan, and D. Somasundaram, “Analytical investigation of solar air heater with jet impingement using energy and exergy analysis”, Sol. Energy., vol. 161, no. October, pp. 25–37, 2017. 2018. DOI: 10.1016/j.solener.2017.12.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.