Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 7
173
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance of microencapsulated phase change material slurry in helical coils with reversed loops and wire coil inserts

, ORCID Icon &
Pages 984-1011 | Received 16 Oct 2021, Accepted 30 May 2022, Published online: 23 Jun 2022

References

  • R. A. Seban and E. F. McLaughlin, “Heat transfer in tube coils with laminar and turbulent flow,” Int. J. Heat Mass Transf., vol. 6, no. 5, pp.387–395, 1963. DOI: 10.1016/0017-9310(63)90100-5.
  • M. F. Pakdaman, M. A. Akhavan-Behabadi, and P. Razi, “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes, Exp,” Therm. Fluid Sci., vol. 40, pp.103–111, 2012. DOI: 10.1016/j.expthermflusci.2012.02.005.
  • K. Sreejith, et al., “Experimental investigation of a helical coil heat exchanger,” Int. J. Eng. Sci., vol. 5, pp.1–5, 2015.
  • N. Acharya, M. Sen, and H. C. Chang, “Analysis of heat transfer enhancement in coiled-tube heat exchangers,” Int. J. Heat Mass Transf., vol. 44, no. 17, pp.3189–3199, 2001. DOI: 10.1016/S0017-9310(01)00002-3.
  • M. Kong, K. Yu, J. L. Alvarado, and W. Terrell Jr., “Thermal performance of microencapsulated phase change material slurry in a coil heat exchanger,” J. Heat Transf., vol. 137, no. 7, pp.071801-1–8, 2015. DOI: 10.1115/1.4029819.
  • Y. Yamagishi, H. Takeuchi, A. T. Pyatenko, and N. Kayukawa, “Characteristics of microencapsulated PCM slurry as a heat-transfer fluid,” AIChE J., vol. 45, no. 4, pp.696–707, 1999. DOI: 10.1002/aic.690450405.
  • J. L. Alvarado, C. Marsh, C. Sohn, G. Phetteplace, and T. Newell, “Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux,” Int. J. Heat Mass Transf., vol. 44, no. 50, pp.1938–1952, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.026.
  • H. Taherian, J. L. Alvarado, K. Tumuluri, C. Thies, and C. Park, “Fluid flow and heat transfer characteristics of microencapsulated phase change material slurry in turbulent flow,” J. Heat Transf., vol. 136, no. 6, pp.061704-1–7, 2014. DOI: 10.1115/1.4026863.
  • M. Kong, J. L. Alvarado, W. Terrell Jr, and C. Thies, “Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube,” Int. J. Heat Mass Transf., vol. 101, pp. 901–914, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.047.
  • S. K. Roy and B. L. Avanic, “Turbulent heat transfer with phase change material suspensions,” Int. J. Heat Mass Transf., vol. 44, no. 12, pp.2277–2285, 2001. DOI: 10.1016/S0017-9310(00)00260-X.
  • C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles. Boca Raton, FL: CRC Press, 1998.
  • X. Wang, et al., “Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube,” Int. J. of Heat Mass Transf., vol. 50, no. 13–14, pp.2480–2491, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.024.
  • W. R. Dean, “XVI. Note on the motion of fluid in a curved pipe,” Philos. Mag., vol. 4, no. 20, pp.208, 1927. DOI: 10.1080/14786440708564324.
  • P. Mishra and S. N. Gupta, “Momentum transfer in curved pipes,” I. Newtonian Fluids Indust. Eng. Chem. Process Des. Develop., vol. 18, no. 1, pp.130–142, 1978. DOI: 10.1021/i260069a017.
  • Y. Mori and W. Nakayama, “Study on forced convective heat transfer in curved pipes (3rd Report, theoretical analysis under the condition of uniform wall temperature and practical formulae),” Int. J. Heat Mass Transf., vol. 10, no. 5, pp.681–695, 1967. DOI: 10.1016/0017-9310(67)90113-5.
  • G. F. C. Rogers and Y. R. Mayhew, “Heat transfer and pressure loss in helically coiled tubes with turbulent flow,” Int. J. Heat Mass Transf., vol. 7, no. 11, pp.1207–1216, 1964. DOI: 10.1016/0017-9310(64)90062-6.
  • A. V. Kirpikov, “Heat transfer in helically coiled pipes, Trudi Moskov,” Inst. Khim. Mashinojtrojenija, vol. 12, pp. 43–56, 1957.
  • A. Huertas, J. P. Solano, A. Garcia, R. Herrero-Martín, and J. Pérez-García, “Tube-side heat transfer enhancement in flat-plate liquid solar collectors with wire coil inserts,” Exp. Heat Transf., vol. 30, no. 1, pp.1–10, 2017. DOI: 10.1080/08916152.2015.1124156.
  • M. Mirzaei and A. Azimi, “Heat transfer and pressure drop characteristics of graphene oxide/water nanofluid in a circular tube fitted with wire coil insert,” Exp. Heat Transf., vol. 29, no. 2, pp.173–187, 2016. DOI: 10.1080/08916152.2014.973975.
  • S. Bhattacharyya, H. Raghavendran B, and A. R. Paul, “The effect of circular hole spring tape on the turbulent heat transfer and entropy analysis in a heat exchanger tube: an experimental study,” Exp. Heat Transf., vol. 34, no. 6, pp.493–512, 2021. DOI: 10.1080/08916152.2020.1787560.
  • H. M. Shankara Murthy and R. N. Hegde, “Investigations on the effect of disturbed flow using differently configured turbulators and Alumina nanofluid as a coolant in a double tube heat exchanger,” Exp. Heat Transf., vol. 35, pp. 282–307, 2021.
  • R. Webb, Principles of Enhanced Heat Transfer. New York, USA: John Wiley & Sons, ch. Insert Devices for Single-Phase Flow. pp. 166–199 1994.
  • Ravigururajan, T. S., and Bergles, A. E. (February 1, 1994). “Visualization of Flow Phenomena Near Enhanced Surfaces.” ASME. J. Heat Transfer. February 1994; 116(1): 54–57. https://doi.org/10.1115/1.2910883
  • N. R. Herring and S. D. Heister, “Review of the development of compact, high performance heat exchangers for gas turbine applications,” Proceedings of IMECE 2006, 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, Nov. 5-10, 2006.
  • C. Yildiz, Y. Bicer, and D. Pehlivan, “Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs,” Energy Convers. Mgmt., vol. 38, no. 6, pp.619–624, 1997. DOI: 10.1016/S0196-8904(96)00040-4.
  • R. K. Ali, M. A. Sharafeldeen, N. S. Berbish, and M. A. Moawed, “Convective heat transfer enhancement inside tubes using inserted helical coils,” Thermal Eng., vol. 63, no. 1, pp.42–50, 2016. DOI: 10.1134/S0040601516010018.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” Int. J. Heat Mass Transf., vol. 24, no. 4, pp.715–726, 1981. DOI: 10.1016/0017-9310(81)90015-6.
  • R. L. Webb and E. R. G. Eckert, “Application of rough surface to heat exchanger design,” Int. J. Heat Mass Transf., vol. 15, no. 9, pp.1647–1658, 1972. DOI: 10.1016/0017-9310(72)90095-6.
  • Y. Wang, J. L. Alvarado, and W. Terrell Jr., “Thermal and flow characteristics of helical coils with reversed loops,” Int. J. Heat Mass Transf., vol. 126, pp. 670–680, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.110.
  • J. F. Fan, W. K. Ding, J. F. Zhang, Y. L. He, and W. Q. Tao, “A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving,” Int. J. Heat Mass Transf., vol. 52, no. 2, pp.33–34, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.006.
  • X. Peng, D. Wang, G. Wang, Y. Yang, and S. Xiang, “Investigation of heat transfer performance and flow characteristic in helically coiled-twisted flat tube,” Exp. Heat Transf., vol. 33, no. 5, pp.419–439, 2020. DOI: 10.1080/08916152.2019.1656300.
  • Y. Wang, J. L. Alvarado, and W. Terrell Jr., “Thermal performance of helical coils with reversed loops and wire coil inserts,” Int. J. Heat Mass Transf., vol. 146, pp. 118723, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118723.
  • C. X. Lin and M. A. Ebadian, “Developing turbulent convective heat transfer in helical pipes,” Int. J. Heat Mass Transf., vol. 40, no. 16, pp.3861–3873, 1997. DOI: 10.1016/S0017-9310(97)00042-2.
  • C. X. Lin and M. A. Ebadian, “The effects of inlet turbulence on the development of fluid flow and heat transfer in a helically coiled pipe,” Int. J. Heat Mass Transf., vol. 42, no. 4, pp.739–751, 1999. DOI: 10.1016/S0017-9310(98)00193-8.
  • L. L. Christine, “Using mixtures of fatty acid methyl esters as phase change materials for concrete,” Open Access Theses, vol. 472, pp. 18, 2015.
  • J. S. Chickos, H. Zhao, and G. Nichols, “The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation – gas chromatography,” Thermochim. Acta, vol. 424, no. 1–2, pp.111–121, 2004. DOI: 10.1016/j.tca.2004.05.020.
  • R. Nikolic, M. Marinovic-Cincovic, S. Gadzuric, and I. J. Zsigrai, “New materials for solar thermal storage—solid/liquid transitions in fatty acid esters,” Sol. Energy Mater. Sol. Cells, vol. 79, no. 3, pp.285–292, 2003. DOI: 10.1016/S0927-0248(02)00412-9.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. 3rd ed, New York: Eover Publications, 1954, pp. 440–441
  • K. E. Kasza and M. M. Chen, “Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid,” J. Sol. Energy Eng., vol. 107, no. 3, pp.229–236, 1985. DOI: 10.1115/1.3267683.
  • T. Hatakeyama and F. X. Quinn, Thermal Analysis: Fundamentals and Applications to Polymer Science. New York: John Wiley & Sons, 1994, pp. 158.
  • Y. Wang, H. A. I. Al-Saaidi, M. Kong, and J. L. Alvarado, “Thermophysical performance of graphene based aqueous nanofluids,” Int. J. Heat Mass Transf., vol. 119, pp. 408–417, 2018.
  • G. Hetsroni, “Particles-turbulence interaction,” Int. J. Multiph. Flow, vol. 15, no. 5, pp.735–746, 1989. DOI: 10.1016/0301-9322(89)90037-2.
  • M. Ghobadi and Y. S. Muzychka, “Heat transfer and pressure drop in a spiral square channel,” Exp. Heat Transf., vol. 28, no. 6, pp.546–563, 2015. DOI: 10.1080/08916152.2014.915272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.