Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 7
218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous mapping of buoyancy-induced flow and temperature fields using thermographic PIV

, , &
Pages 1078-1098 | Received 10 Apr 2022, Accepted 24 Jun 2022, Published online: 06 Jul 2022

References

  • T. Tsuji and Y. Nagano, “Turbulence measurements in a natural convection boundary layer along a vertical flat plate,” Int. J. Heat Mass Transf, vol. 31, no. 10, pp. 2101–2111, 1988. DOI: 10.1016/0017-9310(88)90120-2.
  • D. Saury, A. Benkhelifa, and F. Penot, “Experimental determination of first bifurcations to unsteady natural convection in a differentially-heated cavity tilted from 0° to 180°,” Exp. Therm. Fluid Sci, vol. 38, pp. 74–84, 2012. DOI:10.1016/j.expthermflusci.2011.11.009.
  • V. A. Ilie, D. Saury, D. Lemonnier, and P. Belleoud, “Coupled temperature and velocity measurements in turbulent natural convection flows,” J. Phys. Conf. Ser, vol. 395, pp. 012067, 2012. DOI:10.1088/1742-6596/395/1/012067.
  • M. Montiel-González, J. F. Hinojosa, H. I. Villafán-Vidales, A. Bautista-Orozco, and C. A. Estrada, “Theoretical and experimental study of natural convection with surface thermal radiation in a side open cavity,” Appl. Therm. Eng, vol. 75, pp. 1176–1186, 2015. DOI:10.1016/j.applthermaleng.2014.05.047.
  • Y. Li, H. Pabiou, and C. Ménézo, “Unsteady heated vertical channel flow in a cavity,” Int. J. Therm. Sci, vol. 125, pp. 293–304, 2018. DOI:10.1016/j.ijthermalsci.2017.11.023.
  • H. Karatas and T. Derbentli, “Natural convection in differentially heated rectangular cavities with time periodic boundary condition on one side,” Int. J. Heat Mass Transf, vol. 129, pp. 224–237, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.09.087.
  • J. Salat, S. Xin, P. Joubert, A. Sergent, F. Penot, and P. Le. Quere, “Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity,” Int. J. Heat Fluid Flow, vol. 25, no. 5, pp. 824–832, 2004. DOI: 10.1016/j.ijheatfluidflow.2004.04.003.
  • N. Serra and V. Semiao, “Characterization of non-isothermal flows typical of built environments in a laboratory scale model. Part I - Experiments with 3D PIV,” Build. Environ, vol. 68, pp. 225–238, 2013. DOI:10.1016/j.buildenv.2013.06.007.
  • M. Prakash, S. B. Kedare, and J. K. Nayak, “Numerical study of natural convection loss from open cavities,” Int. J. Therm. Sci, vol. 51, pp. 23–30, 2012. DOI:10.1016/j.ijthermalsci.2011.08.012.
  • A. Karami and F. Veysi, “Thermal behavior due to buoyancy-driven convection between two vertical surfaces in an enclosed cavity partitioned by an array of perforated blades,” Exp. Heat Transf, pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1991512.
  • T. Yazdanipour, F. Shahraki, and D. Mohebbi-Kalhori, “Combined convective loss from a bicylindrical cavity receiver under wind condition: an experimental study,” Exp. Heat Transf, vol. 35, no. 4, pp. 440–454, 2021. DOI: 10.1080/08916152.2021.1890280.
  • S. Narayan, A. K. Singh, and A. Srivastava, “Interferometric study of natural convection heat transfer phenomena around array of heated cylinders,” Int. J. Heat Mass Transf, vol. 109, pp. 278–292, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.01.106.
  • V. Kishor, S. Singh, and A. Srivastava, “Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: whole field experiments and numerical simulations,” Exp. Therm. Fluid Sci, vol. 99, pp. 71–84, 2018. DOI:10.1016/j.expthermflusci.2018.07.021.
  • A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transf. Und Stoffuebertragung, vol. 41, no. 4, pp. 353–359, 2005. DOI: 10.1007/s00231-004-0534-4.
  • V. Kishor, R. Kumar, S. Singh, and A. Srivastava, “Nonintrusive experimental study of natural convection in an open square cavity at different inclinations,” J. Flow Vis. Image Process, vol. 27, 2020. DOI: 10.1615/jflowvisimageproc.2020031075.
  • F. Corvaro, M. Paroncini, and M. Sotte, “Experimental PIV and interferometric analysis of natural convection in a square enclosure with partially active hot and cold walls,” Int. J. Therm. Sci, vol. 50, no. 9, pp. 1629–1638, 2011. DOI: 10.1016/j.ijthermalsci.2011.03.029.
  • A. Ahadi and M. Z. Saghir, “An extensive heat transfer analysis using Mach Zehnder interferometry during thermodiffusion experiment on board the International Space Station,” Appl. Therm. Eng, vol. 62, no. 2, pp. 351–364, 2014. DOI: 10.1016/j.applthermaleng.2013.09.048.
  • R. A. Showole and J. D. Tarasuk, “Experimental and numerical studies of natural convection with flow separation in upward-facing inclined open cavities,” J. Heat Transfer, vol. 115, no. 3, pp. 592–605, 1993. DOI: 10.1115/1.2910729.
  • A. Saxena, V. Kishor, A. Srivastava, and S. Singh, “Whole field measurements to identify the critical Rayleigh number for the onset of natural convection in top open cavity,” Exp. Heat Transf, vol. 33, pp. 1–18, 2020. DOI:10.1080/08916152.2019.1586800.
  • S. Srinivas Rao and A. Srivastava, “Multi view interferometric tomography measurements of convective phenomena in a differentially-heated nanofluid layer,” Exp. Heat Transf, pp. 1–32, 2022. DOI: 10.1080/08916152.2022.2080302.
  • D. Ambrosini and G. Tanda, “Comparative measurements of natural convection heat transfer in channels by holographic interferometry and schlieren,” Eur. J. Phys, vol. 27, no. 1, pp. 159–172, 2006. DOI: 10.1088/0143-0807/27/1/016.
  • D. S. Jain, S. Srinivas Rao, and A. Srivastava, “Rainbow schlieren deflectometry technique for nanofluid-based heat transfer measurements under natural convection regime,” Int. J. Heat Mass Transf, vol. 98, pp. 697–711, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.03.062.
  • A. Srivastava, A. Phukan, P. K. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng, vol. 42, no. 4, pp. 469–485, 2004. DOI: 10.1016/j.optlaseng.2004.03.003.
  • I. Tanasawa, “Experimental techniques in natural convection,” Exp. Therm. Fluid Sci, vol. 10, no. 4, pp. 503–518, 1995. DOI: 10.1016/0894-1777(94)00125-R.
  • Y. Liu, C. Lei, and J. C. Patterson, “Natural convection in a differentially heated cavity with two horizontal adiabatic fins on the sidewalls,” Int. J. Heat Mass Transf, vol. 72, pp. 23–36, 2014. DOI:10.1016/j.ijheatmasstransfer.2013.12.083.
  • F. Xu, J. C. Patterson, and C. Lei, “An experimental study of the unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1139–1153, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.01.001.
  • D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Flow, vol. 24, no. 3, pp. 345–355, 2003. DOI: 10.1016/S0142-727X(03)00021-3.
  • O. S. Bharti, A. K. Saha, and M. K. Das, “Investigation of the transition of natural convective flow of water in a differentially heated cubic enclosure,” Exp. Heat Transf, pp. 1–28, 2022. DOI: 10.1080/08916152.2022.2039329.
  • C. Shakher, M. M. Hossain, D. S. Mehta, and G. Sheoran, “Measurement of temperature field in steady laminar free convection flow using digital holography,” Ninth Int. Symp. Laser Metrol, vol. 7155, pp. 71551X, 2008. DOI:10.1117/12.814570.
  • G. Kumar and A. Srivastava, “Development and application of digital holography for temperature and velocity measurements.” in: 24th Natl. 2nd Int. ISHMT-ASTFE Heat Mass Transf. Conf., Indian Society for Heat and Mass Transfer, 2017: pp. 329–336. doi:10.1615/IHMTC-2017.450.
  • F. Corvaro and M. Paroncini, “Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques,” Exp. Therm. Fluid Sci, vol. 31, no. 7, pp. 721–739, 2007. DOI: 10.1016/j.expthermflusci.2006.07.006.
  • D. Saury, N. Rouger, F. Djanna, and F. Penot, “Natural convection in an air-filled cavity: experimental results at large Rayleigh numbers,” Int. Commun. Heat Mass Transf, vol. 38, no. 6, pp. 679–687, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.019.
  • Y. S. Tian and T. G. Karayiannis, “Low turbulence natural convection in an air filled square cavity Part I: the thermal and fluid flow fields,” Int. J. Heat Mass Transf, vol. 43, no. 6, pp. 849–866, 2000. DOI: 10.1016/S0017-9310(99)00199-4.
  • P. L. Betts and I. H. Bokhari, “Experiments on turbulent natural convection in an enclosed tall cavity,” Int. J. Heat Fluid Flow, vol. 21, no. 6, pp. 675–683, 2000. DOI: 10.1016/S0142-727X(00)00033-3.
  • M. Miyamoto, T. H. Kuehn, R. J. Goldstein, and Y. Katoh, “Two-dimensional laminar natural convection heat transfer from a fully or partially open square cavity,” Numer. Heat Transf. Part A Appl, vol. 15, no. 4, pp. 411–430, 1989. DOI: 10.1080/10407788908944696.
  • C. Daverat, H. Pabiou, C. Ménézo, H. Bouia, and S. Xin, “Experimental investigation of turbulent natural convection in a vertical water channel with symmetric heating: flow and heat transfer,” Exp. Therm. Fluid Sci, vol. 44, pp. 182–193, 2013. DOI:10.1016/J.EXPTHERMFLUSCI.2012.05.018.
  • F. Corvaro and M. Paroncini, “An experimental study of natural convection in a differentially heated cavity through a 2D-PIV system,” Int. J. Heat Mass Transf, vol. 52, no. 1–2, pp. 355–365, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.05.039.
  • Y. Zhao, C. Lei, and J. C. Patterson, “A PIV measurement of the natural transition of a natural convection boundary layer,” Exp. Fluids, vol. 56, no. 1, 2015. DOI:10.1007/s00348-014-1891-5.
  • M. N. Sánchez, E. Giancola, M. J. Suárez, E. Blanco, and M. R. Heras, “Experimental evaluation of the airflow behaviour in horizontal and vertical open joint ventilated facades using Stereo-PIV,” Renew. Energy, vol. 109, pp. 613–623, 2017. DOI:10.1016/j.renene.2017.03.082.
  • D. Kim, D. Kim, M. Kim, J. Lee, I. Jung, K. Roh, and K.C. Kim, “Velocity field measurement on natural convection inside an automotive headlamp using time-resolved stereoscopic particle image velocimetry,” Int. J. Heat Fluid Flow, vol. 77, pp. 19–30, 2019. DOI:10.1016/J.IJHEATFLUIDFLOW.2019.03.004.
  • T. Tsuji and Y. Nagano, “Velocity and temperature measurements in a natural convection boundary layer along a vertical flat plate,” Exp. Therm. Fluid Sci, vol. 2, no. 2, pp. 208–215, 1989. DOI: 10.1016/0894-1777(89)90035-6.
  • C. Daverat, Y. Li, H. Pabiou, C. Ménézo, and S. Xin, “Transition to turbulent heat transfer in heated vertical channel - Experimental analysis,” Int. J. Therm. Sci, vol. 111, pp. 321–329, 2017. DOI:10.1016/j.ijthermalsci.2016.09.004.
  • X. Zhao, H. Zhang, X. Xi, F. Liu, and B. Zhang, “Effect of unidirectional surface roughness on heat transfer performance of spray cooling,” Exp. Heat Transf, pp. 1–24, 2022. DOI: 10.1080/08916152.2022.2040653.
  • S. Someya, Y. Li, K. Ishii, and K. Okamoto, “Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles,” Exp. Fluids, vol. 50, no. 1, pp. 65–73, 2011. DOI: 10.1007/s00348-010-0894-0.
  • K. Hishida and J. Sakakibara, “Combined planar laser-induced fluorescence-particle image velocimetry technique for velocity and temperature fields,” Exp. Fluids, vol. 29, no. 7, pp. S129–S140, 2000. DOI: 10.1007/s003480070015.
  • J. Sakakibara, K. Hishida, and M. Maeda, “Measurements of thermally stratified pipe flow using image-processing techniques,” Exp. Fluids, vol. 16, no. 2, pp. 82–96, 1993. DOI: 10.1007/BF00944910.
  • J. Westerweel, T. Hofmann, C. Fukushima, and J. C. R. Hunt, “The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet,” Exp. Fluids, vol. 33, no. 6, pp. 873–878, 2002. DOI: 10.1007/s00348-002-0489-5.
  • I. Murgan, F. Bunea, and G. D. Ciocan, “Experimental PIV and LIF characterization of a bubble column flow,” Flow Meas. Instrum, vol. 54, pp. 224–235, 2017. DOI:10.1016/j.flowmeasinst.2017.02.004.
  • A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B Lasers Opt, vol. 92, no. 1, pp. 99–102, 2008. DOI: 10.1007/s00340-008-3051-1.
  • B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express, vol. 20, no. 20, pp. 22118, 2012. DOI: 10.1364/oe.20.022118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.