117
Views
23
CrossRef citations to date
0
Altmetric
Original

The role of T cells in cutaneous autoimmune disease

, , &
Pages 303-317 | Received 30 Nov 2004, Accepted 24 Mar 2005, Published online: 07 Jul 2009

References

  • Janeway CA, Travers P, Walport M, Shlomchik M. T Cell-mediated immunity. Immunobiology: The immune system in health and disease5th ed. Garland Publishing, New York 2001; 295–340
  • Nishifuji K, Kuwana M, Iwasaki T, Nishikawa T, Amagai M. Requirement of CD4+ T cell collaboration for the autoantibody response to desmoglein 3 (DSG3) in pemphigus vulgaris. J Investig Dermatol 1999; 112: 532
  • Janeway CA, Travers P, Walport M, Shlomchik M. The humoral immune response. Immunobiology: The immune system in health and disease5th ed. Garland Publishing, New York 2001; 341–380
  • Sinha AA, Lopez MT, McDevitt HO. Autoimmune diseases: The failure of self tolerance. Science 1990; 248: 1380–1388
  • Firestein GS. The T cell cometh: Interplay between adaptive immunity and cytokine networks in rheumatoid arthritis. J Clin Investig 2004; 114: 471–474
  • Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200: 277–285
  • Antel J, Owens T. Multiple sclerosis and immune regulatory cells. Brain 2004; 127: 1915–1916
  • Weiner HL. Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol 2004; 61: 1613–1615
  • Juedes AE, Von Herrath MG. Regulatory T-cells in type 1 diabetes. Diabetes Metab Res Rev 2004
  • Korc M. Update on diabetes mellitus. Dis Markers 2004; 20: 161–165
  • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669
  • Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 2002; 295: 338–342
  • Ouyang W, Ranganath SH, Weindel K, et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998; 9: 745–755
  • Ouyang W, Lohning M, Gao Z, et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12: 27–37
  • Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89: 587–596
  • Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272: 21597–21603
  • Lee GR, Fields PE, Flavell RA. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 2001; 14: 447–459
  • Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2: 933–944
  • Ho IC, Glimcher LH. Transcription: Tantalizing times for T cells. Cell 2002; 109: S109–S120
  • Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922
  • Gray D, Siepmann K, Wohlleben G. CD40 ligation in B cell activation, isotype switching and memory development. Semin Immunol 1994; 6: 303–310
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856
  • Rocha B, Tanchot C. Towards a cellular definition of CD8+ T-cell memory: The role of CD4+ T-cell help in CD8+ T-cell responses. Curr Opin Immunol 2004; 16: 259–263
  • Hashimoto T. Recent advances in the study of the pathophysiology of pemphigus. Arch Dermatol Res 2003; 295(Suppl 1)S2–S11
  • Becker BA, Gaspari AA. Pemphigus vulgaris and vegetans. Dermatol Clin 1993; 11: 429–452
  • Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med 1982; 306: 1189–1196
  • Hashimoto K, Shafran KM, Webber PS, Lazarus GS, Singer KH. Anti-cell surface pemphigus autoantibody stimulates plasminogen activator activity of human epidermal cells. A mechanism for the loss of epidermal cohesion and blister formation. J Exp Med 1983; 157: 259–272
  • Stanley JR, Koulu L, Thivolet C. Distinction between epidermal antigens binding pemphigus vulgaris and Peemphigus foliaceus autoantibodies. J Clin Investig 1984; 74: 313–320
  • Harman KE, Gratian MJ, Bhogal BS, Challacombe SJ, Black MM. A study of desmoglein 1 autoantibodies in pemphigus vulgaris: Racial differences in frequency and the association with a more severe phenotype. Br J Dermatol 2000; 143: 343–348
  • Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J Clin Investig 1999; 103: 461–468
  • Hashimoto T, Amagai M, Watanabe K, et al. A case of pemphigus vulgaris showing reactivity with pemphigus antigens (Dsg1 and Dsg3) and desmocollins. J Investig Dermatol 1995; 104: 541–544
  • Nguyen VT, Ndoye A, Grando SA. Pemphigus vulgaris antibody identifies pemphaxin. A novel keratinocyte annexin-like molecule binding acetylcholine. J Biol Chem 2000; 275: 29466–29476
  • Grando SA. Autoimmunity to keratinocyte acetylcholine receptors in pemphigus. Dermatology 2000; 201: 290–295
  • Stanley JR, Nishikawa T, Diaz LA, Amagai M. Pemphigus: Is there another half of the story?. J Investig Dermatol 2001; 116: 489–490
  • Ohyama M, Amagai M, Tsunoda K, et al. Immunologic and histopathologic characterization of an active disease mouse model for pemphigus vulgaris. J Investig Dermatol 2002; 118: 199–204
  • Proby CM, Ota T, Suzuki H, et al. Development of chimeric molecules for recognition and targeting of antigen-specific B cells in pemphigus vulgaris. Br J Dermatol 2000; 142: 321–330
  • Fan JL, Memar O, McCormick DJ, Prabhakar BS. BALB/c mice produce blister-causing antibodies upon immunization with a recombinant human desmoglein 3. J Immunol 1999; 163: 6228–6235
  • Tremeau-Martinage C, Oksman F, Bazex J. [Immunoglobulin G subclass distribution of anti-intercellular substance antibodies in pemphigus]. Ann Dermatol Venereol 1995; 122: 409–411
  • Bhol K, Natarajan K, Nagarwalla N, Mohimen A, Aoki V, Ahmed AR. Correlation of peptide specificity and IgG subclass with pathogenic and nonpathogenic autoantibodies in pemphigus vulgaris: A model for autoimmunity. Proc Natl Acad Sci USA 1995; 92: 5239–5243
  • Hertl M. Humoral and cellular autoimmunity in autoimmune bullous skin disorders. Int Arch Allergy Immunol 2000; 122: 91–100
  • Futei Y, Amagai M, Sekiguchi M, Nishifuji K, Fujii Y, Nishikawa T. Use of domain-swapped molecules for conformational epitope mapping of desmoglein 3 in pemphigus vulgaris. J Investig Dermatol 2000; 115: 829–834
  • Sekiguchi M, Futei Y, Fujii Y, Iwasaki T, Nishikawa T, Amagai M. Dominant autoimmune epitopes recognized by pemphigus antibodies map to the N-terminal adhesive region of desmogleins. J Immunol 2001; 167: 5439–5448
  • Scharf SJ, Friedmann A, Brautbar C, et al. HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci USA 1988; 85: 3504–3508
  • Sinha AA, Brautbar C, Szafer F, et al. A newly characterized HLA DQ beta allele associated with pemphigus vulgaris. Science 1988; 239: 1026–1029
  • Todd JA, Acha-Orbea H, Bell JI, et al. A molecular basis for MHC class II–associated autoimmunity [published erratum appears in Science 1988 Aug 19;241(4868):888]. Science 1988; 240: 1003–1009
  • Sinha AA, Brautbar C, Szafer F, . HLA-DR and HLA-DQ alleles associated with pemphigus vulgaris. Cellular basis of immune modulation, RC Vleakley, et al. Alan R. Liss, Inc, New York, NY 1989; 465–468
  • Veldman C, Stauber A, Wassmuth R, Uter W, Schuler G, Hertl M. Dichotomy of autoreactive Th1 and Th2 cell responses to desmoglein 3 in patients with pemphigus vulgaris (PV) and healthy carriers of PV-associated HLA class II alleles. J Immunol 2003; 170: 635–642
  • Hertl M, Amagai M, Sundaram H, Stanley J, Ishii K, Katz SI. Recognition of desmoglein 3 by autoreactive T cells in pemphigus vulgaris patients and normals. J Investig Dermatol 1998; 110: 62–66
  • Lin MS, Swartz SJ, Lopez A, et al. Development and characterization of desmoglein-3 specific T cells from patients with pemphigus vulgaris. J Clin Investig 1997; 99: 31–40
  • Wucherpfennig KW, Yu B, Bhol K, et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: Charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA 1995; 92: 11935–11939
  • Veldman CM, Gebhard KL, Uter W, et al. T cell recognition of desmoglein 3 peptides in patients with pemphigus vulgaris and healthy individuals. J Immunol 2004; 172: 3883–3892
  • Rizzo C, Fotino M, Zhang Y, Chow S, Spizuoco A, Sinha AA. Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Exp Dermatol 2005, In press
  • Hertl M, Riechers R. Analysis of the T cells that are potentially involved in autoantibody production in pemphigus vulgaris. J Dermatol 1999; 26: 748–752
  • Veldman C, Hohne A, Dieckmann D, Schuler G, Hertl M. Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol 2004; 172: 6468–6475
  • Riechers R, Grotzinger J, Hertl M. HLA class II restriction of autoreactive T cell responses in pemphigus vulgaris: Review of the literature and potential applications for the development of a specific immunotherapy. Autoimmunity 1999; 30: 183–196
  • Hertl M, Karr RW, Amagai M, Katz SI. Heterogeneous MHCII restriction pattern of autoreactive desmoglein 3 specific T cell responses in pemphigus vulgaris patients and normals. J Investig Dermatol 1998; 110: 388–392
  • Hacker-Foegen MK, Fairley JA, Lin MS. T cell receptor gene usage in desmoglein-3-specific T lymphocytes from patients with pemphigus vulgaris. J Investig Dermatol 2003; 121: 1365–1372
  • Hans-Filho G, Aoki V, Rivitti E, Eaton DP, Lin MS, Diaz LA. Endemic pemphigus foliaceus (fogo selvagem)–1998. The cooperative group on Fogo Selvagem research. Clin Dermatol 1999; 17: 225–235, Discussion 105–6
  • Sotto MN, Shimizu SH, Costa JM, De Brito T. South American pemphigus foliaceus: Electron microscopy and immunoelectron localization of bound immunoglobulin in the skin and oral mucosa. Br J Dermatol 1980; 102: 521–527
  • Cohen LM, Skopicki DK, Harrist TJ, Clark WH. Noninfectious vesiculobullous and vesiculopustular diseases. Lever's histopathology of the skin, D Elder, R Elenitasis, C Jaworsky, B Johnson. Lippincott-Raven, Philadelphia. New York 1990; 209–252
  • Paes-Leme C. Contribuicao ao estudo do Tokelau (Doctoral Thesis). Facultade de Medicina, Rio de Janeiro, Brazil 1903
  • Robledo MA, Prada S, Jaramillo D, Leon W. South American pemphigus foliaceus: Study of an epidemic in El Bagre and Nechi, Colombia 1982 to 1986. Br J Dermatol 1988; 118: 737–744
  • Morini JP, Jomaa B, Gorgi Y, et al. Pemphigus foliaceus in young women. An endemic focus in the Sousse area of Tunisia. Arch Dermatol 1993; 129: 69–73
  • Auad A. Penfigo foliaceo Sul-Americano no Estado de Goias. Brazil Revista Patologia Trop 1972; 1: 293–346
  • Aoki V, Millikan RC, Rivitti EA, et al. Environmental risk factors in endemic pemphigus foliaceus (fogo selvagem). J Investig Dermatol Symp Proc 2004; 9: 34–40
  • Koulu L, Kusumi A, Steinberg MS, Klaus-Kovtun V, Stanley JR. Human autoantibodies against a desmosomal core protein in pemphigus foliaceus. J Exp Med 1984; 160: 1509–1518
  • Beutner EH, Jordon RE. Demonstration of skin antibodies in sera of pemphigus vulgaris patients by indirect immunofluorescent staining. Proc Soc Exp Biol Med 1964; 117: 505–510
  • Ishii K, Amagai M, Hall RP, et al. Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins. J Immunol 1997; 159: 2010–2017
  • Hashimoto T, Amagai M, Garrod DR, Nishikawa T. Immunofluorescence and immunoblot studies on the reactivity of pemphigus vulgaris and pemphigus foliaceus sera with desmoglein 3 and desmoglein 1. Epithelial Cell Biol 1995; 4: 63–69
  • Ohata Y, Amagai M, Ishii K, Hashimoto T. Immunoreactivity against intracellular domains of desmogleins in pemphigus. J Dermatol Sci 2001; 25: 64–71
  • Rock B, Labib RS, Diaz LA. Monovalent Fab' immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J Clin Investig 1990; 85: 296–299
  • Moraes ME, Fernandez-Vina M, Lazaro A, et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens 1997; 49: 35–40
  • Diaz LA, Sampaio SA, Rivitti EA, et al. Endemic pemphigus foliaceus (Fogo Selvagem): II. Current and historic epidemiologic studies. J Investig Dermatol 1989; 92: 4–12
  • Loiseau P, Lecleach L, Prost C, et al. HLA class II polymorphism contributes to specify desmoglein derived peptides in pemphigus vulgaris and pemphigus foliaceus. J Autoimmun 2000; 15: 67–73
  • Miyagawa S, Higashimine I, Iida T, Yamashina Y, Fukumoto T, Shirai T. HLA-DRB1*04 and DRB1*14 alleles are associated with susceptibility to pemphigus among Japanese. J Investig Dermatol 1997; 109: 615–618
  • Lombardi ML, Mercuro O, Ruocco V, et al. Common human leukocyte antigen alleles in pemphigus vulgaris and pemphigus foliaceus Italian patients. J Investig Dermatol 1999; 113: 107–110
  • Martel P, Gilbert D, Busson M, et al. Epistasis between DSG1 and HLA class II genes in pemphigus foliaceus. Genes Immun 2002; 3: 205–210
  • Lin MS, Fu CL, Aoki V, et al. Desmoglein-1-specific T lymphocytes from patients with endemic pemphigus foliaceus (fogo selvagem). J Clin Investig 2000; 105: 207–213
  • Moesta AK, Lin MS, Diaz LA, Sinha AA. T cell receptor Beta chain gene usage in endemic pemphigus foliaceus (fogo selvagem). J Investig Dermatol 2002; 119: 377–383
  • Rocha-Rodrigues DB, Paschoini G, Pereira SA, dos Reis MA, Teixeira Vde P, Rodrigues V, Jr. High levels of interleukin-1 in patients with endemic pemphigus foliaceus. Clin Diagn Lab Immunol 2003; 10: 741–743
  • Lopez-Robles E, Avalos-Diaz E, Vega-Memije E, et al. TNFalpha and IL-6 are mediators in the blistering process of pemphigus. Int J Dermatol 2001; 40: 185–188
  • Torzecka JD, Narbutt J, Sysa-Jedrzejowska A, et al. Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus. Mediators Inflamm. 2003; 12: 303–307
  • Todd JA. From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 1999; 21: 164–174
  • Garchon HJ, Djabiri F, Viard JP, Gajdos P, Bach JF. Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. Proc Natl Acad Sci USA 1994; 91: 4668–4672
  • Djabiri F, Caillat-Zucman S, Gajdos P, et al. Association of the AChRalpha-subunit gene (CHRNA), DQA1*0101, and the DR3 haplotype in myasthenia gravis. Evidence for a three-gene disease model in a subgroup of patients. J Autoimmun 1997; 10: 407–413
  • Lever WF. Pemphigus. Medicine (Baltimore) 1953; 32: 1–123
  • Lin MS, Liu Z, Drolet BA, Diaz LA. Cutaneous autoimmune disease. The autoimmune diseases, NR Rose, IR MacKay. Academic Press, San Diego 1998; 545–570
  • Jordon RE, Beutner EH, Witebsky E, Blumental G, Hale WL, Lever WF. Basement zone antibodies in bullous pemphigoid. JAMA 1967; 200: 751–756
  • Provost TT, Tomasi TB, Jr. Evidence for complement activation via the alternate pathway in skin diseases. I. Herpes gestationis, systemic lupus erythematosus, and bullous pemphigoid. J Clin Invest 1973; 52: 1779–1787
  • Mueller S, Klaus-Kovtun V, Stanley JR. A 230-kD basic protein is the major bullous pemphigoid antigen. J Investig Dermatol 1989; 92: 33–38
  • Giudice GJ, Emery DJ, Diaz LA. Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP180. J Investig Dermatol 1992; 99: 243–250
  • Tanaka T, Parry DA, Klaus-Kovtun V, Steinert PM, Stanley JR. Comparison of molecularly cloned bullous pemphigoid antigen to desmoplakin I confirms that they define a new family of cell adhesion junction plaque proteins. J Biol Chem 1991; 266: 12555–12559
  • Green KJ, Virata ML, Elgart GW, Stanley JR, Parry DA. Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: Members of a new gene family involved in organization of intermediate filaments. Int J Biol Macromol 1992; 14: 145–153
  • Stanley JR, Hawley-Nelson P, Yuspa SH, Shevach EM, Katz SI. Characterization of bullous pemphigoid antigen: A unique basement membrane protein of stratified squamous epithelia. Cell 1981; 24: 897–903
  • Labib RS, Anhalt GJ, Patel HP, Mutasim DF, Diaz LA. Molecular heterogeneity of the bullous pemphigoid antigens as detected by immunoblotting. J Immunol 1986; 136: 1231–1235
  • Ishiko A, Shimizu H, Kikuchi A, Ebihara T, Hashimoto T, Nishikawa T. Human autoantibodies against the 230-kD bullous pemphigoid antigen (BPAG1) bind only to the intracellular domain of the hemidesmosome, whereas those against the 180-kD bullous pemphigoid antigen (BPAG2) bind along the plasma membrane of the hemidesmosome in normal human and swine skin. J Clin Investig 1993; 91: 1608–1615
  • Schmidt E, Zillikens D. Autoimmune and inherited subepidermal blistering diseases: Advances in the clinic and the laboratory. Adv Dermatol 2000; 16: 113–157, Discussion 158
  • Tanaka M, Hashimoto T, Amagai M, et al. Characterization of bullous pemphigoid antibodies by use of recombinant bullous pemphigoid antigen proteins. J Investig Dermatol 1991; 97: 725–728
  • Stanley JR, Tanaka T, Mueller S, Klaus-Kovtun V, Roop D. Isolation of complementary DNA for bullous pemphigoid antigen by use of patients' autoantibodies. J Clin Investig 1988; 82: 1864–1870
  • Rico MJ, Korman NJ, Stanley JR, Tanaka T, Hall RP. IgG antibodies from patients with bullous pemphigoid bind to localized epitopes on synthetic peptides encoded by bullous pemphigoid antigen cDNA. J Immunol 1990; 145: 3728–3733
  • Rico MJ, Hashimototo T, Watanabe K, Hall RP, Clark RB, Nishikawa T. Comparative epitope mapping of sera from United States (US) and Japanese patients with bullous pemphigoid (BP) to fusion proteins encoded by BPAG1. J Dermatol Sci 1996; 12: 238–245
  • Hamada T, Nagata Y, Tomita M, Salmhofer W, Hashimoto T. Bullous pemphigoid sera react specifically with various domains of BP230, most frequently with C-terminal domain, by immunoblot analyses using bacterial recombinant proteins covering the entire molecule. Exp Dermatol 2001; 10: 256–263
  • Borradori L, Koch PJ, Niessen CM, Erkeland S, van Leusden MR, Sonnenberg A. The localization of bullous pemphigoid antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the beta4 integrin subunit. J Cell Biol 1997; 136: 1333–1347
  • Dopp R, Schmidt E, Chimanovitch I, Leverkus M, Brocker EB, Zillikens D. IgG4 and IgE are the major immunoglobulins targeting the NC16A domain of BP180 in Bullous pemphigoid: Serum levels of these immunoglobulins reflect disease activity. J Am Acad Dermatol 2000; 42: 577–583
  • Schmidt E, Obe K, Brocker EB, Zillikens D. Serum levels of autoantibodies to BP180 correlate with disease activity in patients with bullous pemphigoid. Arch Dermatol 2000; 136: 174–178
  • Li K, Tamai K, Tan EM, Uitto J. Cloning of type XVII collagen. Complementary and genomic DNA sequences of mouse 180-kilodalton bullous pemphigoid antigen (BPAG2) predict an interrupted collagenous domain, a transmembrane segment, and unusual features in the 5′-end of the gene and the 3′-untranslated region of the mRNA. J Biol Chem 1993; 268: 8825–8834
  • Giudice GJ, Emery DJ, Zelickson BD, Anhalt GJ, Liu Z, Diaz LA. Bullous pemphigoid and herpes gestationis autoantibodies recognize a common non-collagenous site on the BP180 ectodomain. J Immunol 1993; 151: 5742–5750
  • Zillikens D, Rose PA, Balding SD, et al. Tight clustering of extracellular BP180 epitopes recognized by bullous pemphigoid autoantibodies. J Investig Dermatol 1997; 109: 573–579
  • Liu Z, Diaz LA, Troy JL, et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Investig 1993; 92: 2480–2488
  • Liu Z, Giudice GJ, Zhou X, et al. A major role for neutrophils in experimental bullous pemphigoid. J Clin Investig 1997; 100: 1256–1263
  • Liu Z, Giudice GJ, Swartz SJ, et al. The role of complement in experimental bullous pemphigoid. J Clin Investig 1995; 95: 1539–1544
  • Schmidt E, Reimer S, Kruse N, et al. Autoantibodies to BP180 associated with bullous pemphigoid release interleukin-6 and interleukin-8 from cultured human keratinocytes. J Investig Dermatol 2000; 115: 842–848
  • Budinger L, Borradori L, Yee C, et al. Identification and characterization of autoreactive T cell responses to bullous pemphigoid antigen 2 in patients and healthy controls. J Clin Investig 1998; 102: 2082–2089
  • Lin MS, Fu CL, Giudice GJ, et al. Epitopes targeted by bullous pemphigoid T lymphocytes and autoantibodies map to the same sites on the bullous pemphigoid 180 ectodomain. J Investig Dermatol 2000; 115: 955–961
  • Hacker-Foegen MK, Zillikens D, Giudice GJ, Lin MS. T cell receptor gene usage of BP180-specific T lymphocytes from patients with bullous pemphigoid and pemphigoid gestationis. Clin Immunol 2004; 113: 179–186
  • Michalaki H, Roman-Roman S, Nicolas JF, et al. In-situ preferential usage of V alpha 8 T-cell receptor gene segments in a patient with bullous pemphigoid. J Autoimmun 1993; 6: 827–839
  • Dahl MV. Clinical immunodermatology3rd ed. Mosby, St. Louis 1996
  • Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ. Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc 1995; 70: 628–633
  • Madani S, Shapiro J. Alopecia areata update. J Am Acad Dermatol 2000; 42: 549–566, Quiz 567–70
  • Scerri L, Pace JL. Identical twins with identical alopecia areata. J Am Acad Dermatol 1992; 27: 766–767
  • McElwee KJ, Pickett P, Oliver RF. The DEBR rat, alopecia areata and autoantibodies to the hair follicle. Br J Dermatol 1996; 134: 55–63
  • Sundberg JP, Oliver RF, McElwee KJ, King LE, Jr. Alopecia areata in humans and other mammalian species. J Investig Dermatol 1995; 104: 32S–33S
  • McElwee KJ, Pickett P, Oliver RF. Hair follicle autoantibodies in DEBR rat sera. J Investig Dermatol 1995; 104: 34S–35S
  • Tobin DJ, Orentreich N, Fenton DA, Bystryn JC. Antibodies to hair follicles in alopecia areata. J Investig Dermatol 1994; 102: 721–724
  • Galbraith GM, Miller D, Emerson DL. Western blot analysis of serum antibody reactivity with human melanoma cell antigens in alopecia areata and vitiligo. Clin Immunol Immunopathol 1988; 48: 317–324
  • McElwee KJ, Rushton DH, Trachy R, Oliver RF. Topical FK506: A potent immunotherapy for alopecia areata? Studies using the Dundee experimental bald rat model. Br J Dermatol 1997; 137: 491–497
  • Sainsbury TS, Duncan JI, Whiting PH, et al. Differential effects of FK 506 and cyclosporine on hair regrowth in the DEBR model of alopecia areata. Transplant Proc 1991; 23: 3332–3334
  • Oliver RF, Lowe JG. Oral cyclosporin A restores hair growth in the DEBR rat model for alopecia areata. Clin Exp Dermatol 1995; 20: 127–131
  • Milgraum SS, Mitchell AJ, Bacon GE, Rasmussen JE. Alopecia areata, endocrine function, and autoantibodies in patients 16 years of age or younger. J Am Acad Dermatol 1987; 17: 57–61
  • de Andrade M, Jackow CM, Dahm N, Hordinsky M, Reveille JD, Duvic M. Alopecia areata in families: Association with the HLA locus. J Investig Dermatol Symp Proc 1999; 4: 220–223
  • Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J Investig Dermatol Symp Proc 2003; 8: 188–194
  • Niederkorn JY. Mechanisms of immune privilege in the eye and hair follicle. J Investig Dermatol Symp Proc 2003; 8: 168–172
  • Brocker EB, Echternacht-Happle K, Hamm H, Happle R. Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: Modulation by topical immunotherapy. J Investig Dermatol 1987; 88: 564–568
  • Alexis AF, Dudda-Subramanya R, Sinha AA. Alopecia areata: Autoimmune basis of hair loss. Eur J Dermatol 2004; 14: 364–370
  • Nanda A, Alsaleh QA, Al-Hasawi F, Al-Muzairai I. Thyroid function, autoantibodies, and HLA tissue typing in children with alopecia areata. Pediatr Dermatol 2002; 19: 486–491
  • Kavak A, Baykal C, Ozarmagan G, Akar U. HLA in alopecia areata. Int J Dermatol 2000; 39: 589–592
  • Hacham-Zadeh S, Brautbar C, Cohen CA, Cohen T. HLA and alopecia areata in Jerusalem. Tissue Antigens 1981; 18: 71–74
  • Frentz G, Thomsen K, Jakobsen BK, Svejgaard A. HLA-DR4 in alopecia areata. J Am Acad Dermatol 1986; 14: 129–130
  • Duvic M, Hordinsky MK, Fiedler VC, O'Brien WR, Young R, Reveille JD. HLA-D locus associations in alopecia areata. DRw52a may confer disease resistance. Arch Dermatol 1991; 127: 64–68
  • Kianto U, Reunala T, Karvonen J, Lassus A, Tiilikainen A. HLA-B12 in alopecia areata. Arch Dermatol 1977; 113: 1716
  • Kuntz BM, Selzle D, Braun-Falco O, Scholz S, Albert ED. HLA antigens in alopecia areata. Arch Dermatol 1977; 113: 1717
  • Welsh EA, Clark HH, Epstein SZ, Reveille JD, Duvic M. Human leukocyte antigen-DQB1*03 alleles are associated with alopecia areata. J Invest Dermatol 1994; 103: 758–763
  • Hull SM, Nutbrown M, Pepall L, Thornton MJ, Randall VA, Cunliffe WJ. Immunohistologic and ultrastructural comparison of the dermal papilla and hair follicle bulb from “active” and “normal” areas of alopecia areata. J Investig Dermatol 1991; 96: 673–681
  • Zhang JG, Oliver RF. Immunohistological study of the development of the cellular infiltrate in the pelage follicles of the DEBR model for alopecia areata. Br J Dermatol 1994; 130: 405–414
  • McElwee KJ, Spiers EM, Oliver RF. Partial restoration of hair growth in the DEBR model for Alopecia areata after in vivo depletion of CD4+ T cells. Br J Dermatol 1999; 140: 432–437
  • McElwee KJ, Spiers EM, Oliver RF. In vivo depletion of CD8+ T cells restores hair growth in the DEBR model for alopecia areata. Br J Dermatol 1996; 135: 211–217
  • Gilhar A, Shalaginov R, Assy B, Serafimovich S, Kalish RS. Alopecia areata is a T-lymphocyte mediated autoimmune disease: Lesional human T-lymphocytes transfer alopecia areata to human skin grafts on SCID mice. J Investig Dermatol Symp Proc 1999; 4: 207–210
  • Hoffmann R. The potential role of cytokines and T cells in alopecia areata. J Investig Dermatol Symp Proc 1999; 4: 235–238
  • Thein C, Strange P, Hansen ER, Baadsgaard O. Lesional alopecia areata T lymphocytes downregulate epithelial cell proliferation. Arch Dermatol Res 1997; 289: 384–388
  • Dressel D, Brutt CH, Manfras B, et al. Alopecia areata but not androgenetic alopecia is characterized by a restricted and oligoclonal T-cell receptor-repertoire among infiltrating lymphocytes. J Cutan Pathol 1997; 24: 164–168
  • Benichou G, Price VH. T cell repertoire in mice with alopecia areata. J Investig Dermatol Symp Proc 1999; 4: 224–225
  • Paus R, Slominski A, Czarnetzki BM. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb?. Yale. J Biol Med 1993; 66: 541–554
  • Becker JC, Varki N, Brocker EB, Reisfeld RA. Lymphocyte-mediated alopecia in C57BL/6 mice following successful immunotherapy for melanoma. J Investig Dermatol 1996; 107: 627–632
  • Bakker AB, Schreurs MW, Tafazzul G, et al. Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 1995; 62: 97–102
  • Hordinsky MK, Hallgren H, Nelson D, Filipovich AH. Familial alopecia areata. HLA antigens and autoantibody formation in an American family. Arch Dermatol 1984; 120: 464–468
  • Gilhar A, Landau M, Assy B, Shalaginov R, Serafimovich S, Kalish RS. Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdc(scid) mice. J Investig Dermatol 2001; 117: 1357–1362
  • Lerner AB. On the etiology of vitiligo and gray hair. Am J Med 1971; 51: 141–147
  • Slominski A, Paus R, Bomirski A. Hypothesis: Possible role for the melatonin receptor in vitiligo: Discussion paper. J R Soc Med 1989; 82: 539–541
  • Fite KV, Pardue S, Bengston L, Hayden D, Smyth JR, Jr. Effects of cyclosporine in spontaneous, posterior uveitis. Curr Eye Res 1986; 5: 787–796
  • Pardue SL, Fite KV, Bengston L, Lamont SJ, Boyle ML, III, Smyth JR, Jr. Enhanced integumental and ocular amelanosis following the termination of cyclosporine administration. J Investig Dermatol 1987; 88: 758–761
  • Boyle ML, III, Pardue SL, Smyth JR., Jr. Effect of corticosterone on the incidence of amelanosis in Smyth delayed amelanotic line chickens. Poult Sci 1987; 66: 363–367
  • Lamont SJ, Smyth JR., Jr. Effect of bursectomy on development of a spontaneous postnatal amelanosis. Clin Immunol Immunopathol 1981; 21: 407–411
  • Norris DA, Kissinger RM, Naughton GM, Bystryn JC. Evidence for immunologic mechanisms in human vitiligo: Patients' sera induce damage to human melanocytes in vitro by complement-mediated damage and antibody-dependent cellular cytotoxicity. J Investig Dermatol 1988; 90: 783–789
  • Hertz KC, Gazze LA, Kirkpatrick CH, Katz SI. Autoimmune vitiligo: Detection of antibodies to melanin-producing cells. N Engl J Med 1977; 297: 634–637
  • Song YH, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N. The role of tyrosinase in autoimmune vitiligo. Lancet 1994; 344: 1049–1052
  • Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP. Autoantibodies to human melanocyte-specific protein pmel17 in the sera of vitiligo patients: A sensitive and quantitative radioimmunoassay (RIA). Clin Exp Immunol 1998; 114: 333–338
  • Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP. Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 1998; 139: 798–805
  • Xie Z, Chen D, Jiao D, Bystryn JC. Vitiligo antibodies are not directed to tyrosinase. Arch Dermatol 1999; 135: 417–422
  • Naughton GK, Eisinger M, Bystryn JC. Detection of antibodies to melanocytes in vitiligo by specific immunoprecipitation. J Investig Dermatol 1983; 81: 540–542
  • Baharav E, Merimski O, Shoenfeld Y, et al. Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol 1996; 105: 84–88
  • Li YL, Yu CL, Yu HS. IgG anti-melanocyte antibodies purified from patients with active vitiligo induce HLA-DR and intercellular adhesion molecule-1 expression and an increase in interleukin-8 release by melanocytes. J Investig Dermatol 2000; 115: 969–973
  • Campbell IL, Harrison LC. A new view of the beta cell as an antigen-presenting cell and immunogenic target. J Autoimmun 1990; 3(Suppl 1)53–62
  • Yu HS, Chang KL, Yu CL, Li HF, Wu MT, Wu CS. Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma release by peripheral mononuclear cells in patients with active vitiligo. J Investig Dermatol 1997; 108: 527–529
  • Kirnbauer R, Charvat B, Schauer E, et al. Modulation of intercellular adhesion molecule-1 expression on human melanocytes and melanoma cells: Evidence for a regulatory role of IL-6, IL-7, TNF beta, and UVB light. J Investig Dermatol 1992; 98: 320–326
  • Taub DD, Anver M, Oppenheim JJ, Longo DL, Murphy WJ. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J Clin Investig 1996; 97: 1931–1941
  • Morhenn VB. Cell-mediated autoimmune diseases of the skin: Some hypotheses. Med Hypotheses 1997; 49: 241–245
  • Badri AM, Todd PM, Garioch JJ, Gudgeon JE, Stewart DG, Goudie RB. An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol 1993; 170: 149–155
  • Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 1996; 148: 1219–1228
  • Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 1998; 188: 1203–1208
  • Lang KS, Caroli CC, Muhm A, et al. HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Investig Dermatol 2001; 116: 891–897
  • Greaves MW, Weinstein GD. Treatment of psoriasis. N Engl J Med 1995; 332: 581–588
  • Christophers E, Sterry W. Psoriasis. Dermatology in general medicine4th ed., TB Fitzpatrick, AZ Eisen, K Wolff, IM Freedberg, KF Austen. McGraw-Hill, New York 1993; Vol. 1: 489–514
  • Leder RO, Hodge SE. Psoriasis linkage in the HLA region. Am J Hum Genet 1999; 64: 895–896
  • Leder RO, Mansbridge JN, Hallmayer J, Hodge SE. Familial psoriasis and HLA-B: Unambiguous support for linkage in 97 published families. Hum Hered 1998; 48: 198–211
  • Schmitt-Egenolf M, Boehncke WH, Stander M, Eiermann TH, Sterry W. Oligonucleotide typing reveals association of type I psoriasis with the HLA-DRB1*0701/2, − DQA1*0201, − DQB1*0303 extended haplotype. J Investig Dermatol 1993; 100: 749–752
  • Capon F, Munro M, Barker J, Trembath R. Searching for the major histocompatibility complex psoriasis susceptibility gene. J Investig Dermatol 2002; 118: 745–751
  • Veal CD, Capon F, Allen MH, et al. Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus. Am J Hum Genet 2002; 71: 554–564
  • Jones DA, Yawalkar N, Suh KY, Sadat S, Rich B, Kupper TS. Identification of autoantigens in psoriatic plaques using expression cloning. J Investig Dermatol 2004; 123: 93–100
  • Ellis CN, Gorsulowsky DC, Hamilton TA, et al. Cyclosporine improves psoriasis in a double-blind study. JAMA 1986; 256: 3110–3116
  • Weinshenker BG, Bass BH, Ebers GC, Rice GP. Remission of psoriatic lesions with muromonab-CD3 (orthoclone OKT3) treatment. J Am Acad Dermatol 1989; 20: 1132–1133
  • Prinz J, Braun-Falco O, Meurer M, et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet 1991; 338: 320–321
  • Nicolas JF, Chamchick N, Thivolet J, Wijdenes J, Morel P, Revillard JP. CD4 antibody treatment of severe psoriasis. Lancet 1991; 338: 321
  • Krueger JG, Wolfe JT, Nabeya RT, et al. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J Exp Med 1995; 182: 2057–2068
  • Asadullah K, Sterry W, Stephanek K, et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: A new therapeutic approach. J Clin Investig 1998; 101: 783–794
  • Granstein RD. New treatments for psoriasis. N Engl J Med 2001; 345: 284–287
  • Onuma S. Immunohistochemical studies of infiltrating cells in early and chronic lesions of psoriasis. J Dermatol 1994; 21: 223–232
  • Robert C, Kupper TS. Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 1999; 341: 1817–1828
  • Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Investig 1996; 98: 1878–1887
  • Nickoloff BJ, Wrone-Smith T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999; 155: 145–158
  • Bata-Csorgo Z, Hammerberg C, Voorhees JJ, Cooper KD. Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes. J Clin Investig 1995; 95: 317–327
  • Baker BS, Swain AF, Fry L, Valdimarsson H. Epidermal T lymphocytes and HLA-DR expression in psoriasis. Br J Dermatol 1984; 110: 555–564
  • Baker BS, Swain AF, Valdimarsson H, Fry L. T-cell subpopulations in the blood and skin of patients with psoriasis. Br J Dermatol 1984; 110: 37–44
  • Sigmundsdottir H, Gudjonsson JE, Jonsdottir I, Ludviksson BR, Valdimarsson H. The frequency of CLA+ CD8+ T cells in the blood of psoriasis patients correlates closely with the severity of their disease. Clin Exp Immunol 2001; 126: 365–369
  • Behrendt C, Gollnick H, Bonnekoh B. Up-regulated perforin expression of CD8+ blood lymphocytes in generalized non-anaphylactic drug eruptions and exacerbated psoriasis. Eur J Dermatol 2000; 10: 365–369
  • Yawalkar N, Schmid S, Braathen LR, Pichler WJ. Perforin and granzyme B may contribute to skin inflammation in atopic dermatitis and psoriasis. Br J Dermatol 2001; 144: 1133–1139
  • Jackson M, Howie SE, Weller R, Sabin E, Hunter JA, McKenzie RC. Psoriatic keratinocytes show reduced IRF-1 and STAT-1alpha activation in response to gamma-IFN. Faseb J 1999; 13: 495–502
  • Barker JN, Karabin GD, Stoof TJ, Sarma VJ, Dixit VM, Nickoloff BJ. Detection of interferon-gamma mRNA in psoriatic epidermis by polymerase chain reaction. J Dermatol Sci 1991; 2: 106–111
  • Telfer NR, Chalmers RJ, Whale K, Colman G. The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol 1992; 128: 39–42
  • Gudmundsdottir AS, Sigmundsdottir H, Sigurgeirsson B, Good MF, Valdimarsson H, Jonsdottir I. Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis?. Clin Exp Immunol 1999; 117: 580–586
  • Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN. Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol 1995; 133: 501–511
  • Wilson CL, Dean D, Lane EB, Dawber RP, Leigh IM. Keratinocyte differentiation in psoriatic scalp: Morphology and expression of epithelial keratins. Br J Dermatol 1994; 131: 191–200
  • Sigmundsdottir H, Sigurgeirsson B, Troye-Blomberg M, Good MF, Valdimarsson H, Jonsdottir I. Circulating T cells of patients with active psoriasis respond to streptococcal M-peptides sharing sequences with human epidermal keratins. Scand J Immunol 1997; 45: 688–697
  • Komine M, Freedberg IM, Blumenberg M. Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J Investig Dermatol 1996; 107: 569–575
  • Grossman RM, Krueger J, Yourish D, et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 1989; 86: 6367–6371
  • Leonardi CL, Powers JL, Matheson RT, et al. Etanercept as monotherapy in patients with psoriasis. N Engl J Med 2003; 349: 2014–2022
  • Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: A randomised trial. Lancet 2001; 357: 1842–1847
  • Antoni C, Manger B. Infliximab for psoriasis and psoriatic arthritis. Clin Exp Rheumatol 2002; 20: S122–S125
  • Gottlieb AB. Infliximab for psoriasis. J Am Acad Dermatol 2003; 49: S112–S117
  • Victor FC, Gottlieb AB, Menter A. Changing paradigms in dermatology: Tumor necrosis factor alpha (TNF-alpha) blockade in psoriasis and psoriatic arthritis. Clin Dermatol 2003; 21: 392–397
  • Gordon KB, Vaishnaw AK, O'Gorman J, Haney J, Menter A. Treatment of psoriasis with alefacept: Correlation of clinical improvement with reductions of memory T-cell counts. Arch Dermatol 2003; 139: 1563–1570

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.