131
Views
4
CrossRef citations to date
0
Altmetric
Original

T cell targeted immunotherapy for autoimmune disease

&
Pages 577-596 | Received 28 Jul 2005, Accepted 17 Oct 2005, Published online: 07 Jul 2009

References

  • Abramowicz D, Schandene L, Goldman M, Crusiaux A, Vereerstraeten P, De Pauw L, Wybran J, Kinnaert P, Dupont E, Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 1989; 47: 606–608
  • Bonnefoy-Berard N, Revillard JP. Mechanisms of immunosuppression induced by antithymocyte globulins and OKT3. J Heart Lung Transplant 1996; 15: 435–442
  • Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, Franchimont P, Bach JF. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med 1989; 320: 1420–1421
  • Chatenoud L, Ferran C, Legendre C, Thouard I, Merite S, Reuter A, Gevaert Y, Kreis H, Franchimont P, Bach JF. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 1990; 49: 697–702
  • Norman DJ, Shield CF, 3rd, Henell KR, Kimball J, Barry JM, Bennett WM, Leone M. Effectiveness of a second course of OKT3 monoclonal anti-T cell antibody for treatment of renal allograft rejection. Transplantation 1988; 46: 523–529
  • Protein Design Labs [Internet]. Nuvion®(visilizumab, anti-CD3) [cited 2005 July 24]. Available: http://www.pdl.com/index.cfm?navId=101
  • Cole MS, Stellrecht KE, Shi JD, Homola M, Hsu DH, Anasetti C, Vasquez M, Tso JY. HuM291, a humanized anti-CD3 antibody, is immunosuppressive to T cells while exhibiting reduced mitogenicity in vitro. Transplantation 1999; 68: 563–571
  • Hsu DH, Shi JD, Homola M, Rowell TJ, Moran J, Levitt D, Druilhet B, Chinn J, Bullock C, Klingbeil C. A humanized anti-CD3 antibody, HuM291, with low mitogenic activity, mediates complete and reversible T-cell depletion in chimpanzees. Transplantation 1999; 68: 545–554
  • Norman DJ, Vincenti F, de Mattos AM, Barry JM, Levitt DJ, Wedel NI, Maia M, Light SE. Phase I trial of HuM291, a humanized anti-CD3 antibody, in patients receiving renal allografts from living donors. Transplantation 2000; 70: 1707–1712
  • Chau LA, Tso JY, Melrose J, Madrenas J. HuM291(Nuvion), a humanized Fc receptor-nonbinding antibody against CD3, anergizes peripheral blood T cells as partial agonist of the T cell receptor. Transplantation 2001; 71: 941–950
  • Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: A large fraction of T cell clones escapes clonal deletion. Immunity 2000; 13: 829–840
  • Newman R, Hariharan K, Reff M, Anderson DR, Braslawsky G, Santoro D, Hanna N, Bugelski PJ, Brigham-Burke M, Crysler C, Gagnon RC, Dal Monte P, Doyle ML, Hensley PC, Reddy MP, Sweet RW, Truneh A. Modification of the Fc region of a primatized IgG antibody to human CD4 retains its ability to modulate CD4 receptors but does not deplete CD4(+) T cells in chimpanzees. Clin Immunol 2001; 98: 164–174
  • Reddy MP, Kinney CA, Chaikin MA, Payne A, Fishman-Lobell J, Tsui P, Dal Monte PR, Doyle ML, Brigham-Burke MR, Anderson D, Reff M, Newman R, Hanna N, Sweet RW, Truneh A. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol 2000; 164: 1925–1933
  • Sharma A, Davis CB, Tobia LA, Kwok DC, Tucci MG, Gore ER, Herzyk DJ, Hart TK. Comparative pharmacodynamics of keliximab and clenoliximab in transgenic mice bearing human CD4. J Pharmacol Exp Ther 2000; 293: 33–41
  • Darby CR, Morris PJ, Wood KJ. Evidence that long-term cardiac allograft survival induced by anti-CD4 monoclonal antibody does not require depletion of CD4+ T cells. Transplantation 1992; 54: 483–490
  • van der Lubbe PA, Dijkmans BA, Markusse HM, Nassander U, Breedveld FC. A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum 1995; 38: 1097–1106
  • Field EH, Rouse TM, Fleming AL, Jamali I, Cowdery JS. Altered IFN-gamma and IL-4 pattern lymphokine secretion in mice partially depleted of CD4 T cells by anti-CD4 monoclonal antibody. J Immunol 1992; 149: 1131–1137
  • Mason U, Aldrich J, Breedveld F, Davis CB, Elliott M, Jackson M, Jorgensen C, Keystone E, Levy R, Tesser J, Totoritis M, Truneh A, Weisman M, Wiesenhutter C, Yocum D, Zhu J. CD4 coating, but not CD4 depletion, is a predictor of efficacy with primatized monoclonal anti-CD4 treatment of active rheumatoid arthritis. J Rheumatol 2002; 29: 220–229
  • Bachelez H, Flageul B, Dubertret L, Fraitag S, Grossman R, Brousse N, Poisson D, Knowles RW, Wacholtz MC, Haverty TP, Chatenoud L, Bach JF. Treatment of recalcitrant plaque psoriasis with a humanized non-depleting antibody to CD4. J Autoimmun 1998; 11: 53–62
  • Gottlieb AB, Lebwohl M, Shirin S, Sherr A, Gilleaudeau P, Singer G, Solodkina G, Grossman R, Gisoldi E, Phillips S, Neisler HM, Krueger JG. Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: Results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol 2000; 43: 595–604
  • Lenschow DJ, Ho SC, Sattar H, Rhee L, Gray G, Nabavi N, Herold KC, Bluestone JA. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 1995; 181: 1145–1155
  • Miller SD, Vanderlugt CL, Lenschow DJ, Pope JG, Karandikar NJ, Dal Canto MC, Bluestone JA. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 1995; 3: 739–745
  • Saegusa K, Ishimaru N, Yanagi K, Haneji N, Nishino M, Azuma M, Saito I, Hayashi Y. Treatment with anti-CD86 costimulatory molecule prevents the autoimmune lesions in murine Sjogren's syndrome (SS) through up-regulated Th2 response. Clin Exp Immunol 2000; 119: 354–360
  • Schopf RE. Idec-114 (Idec). Curr Opin Investig Drugs 2001; 2: 635–638
  • Gottlieb ABKS, Linden KG, Lebwohl M, Menter A, Abdulghani AA, Goldfarb M, Chieffo N, Totoritis MC. Evaluation of safety and clinical activity of multiple doses of the anti-CD80 monoclonal antibody, galiximab, in patients with moderate to severe plaque psoriasis. Clin Immunol 2004; 111: 28–37
  • Gottlieb AB, Lebwohl M, Totoritis MC, Abdulghani AA, Shuey SR, Romano P, Chaudhari U, Allen RS, Lizambri RG. Clinical and histologic response to single-dose treatment of moderate to severe psoriasis with an anti-CD80 monoclonal antibody. J Am Acad Dermatol 2002; 47: 692–700
  • Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P. A new member of the immunoglobulin superfamily—CTLA-4. Nature 1987; 328: 267–270
  • Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994; 1: 793–801
  • Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP. CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol 1999; 162: 5813–5820
  • Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996; 183: 2541–2550
  • Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183: 2533–2540
  • Larsen CP, Ritchie SC, Pearson TC, Linsley PS, Lowry RP. Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations. J Exp Med 1992; 176: 1215–1220
  • Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994; 265: 1225–1227
  • Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT, Goffe BS, Menter A, Lowe NJ, Krueger G, Brown MJ, Weiner RS, Birkhofer MJ, Warner GL, Berry KK, Linsley PS, Krueger JG, Ochs HD, Kelley SL, Kang S. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999; 103: 1243–1252
  • Abrams JR, Kelley SL, Hayes E, Kikuchi T, Brown MJ, Kang S, Lebwohl MG, Guzzo CA, Jegasothy BV, Linsley PS, Krueger JG. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 2000; 192: 681–694
  • Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, Russell A, Dougados M, Emery P, Nuamah IF, Williams GR, Becker JC, Hagerty DT, Moreland LW. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003; 349: 1907–1915
  • Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 1988; 140: 1401–1407
  • Wallace DL, Beverley PC. Phenotypic changes associated with activation of CD45RA+ and CD45RO+T cells. Immunology 1990; 69: 460–467
  • Miller GT, Hochman PS, Meier W, Tizard R, Bixler SA, Rosa MD, Wallner BP. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med 1993; 178: 211–222
  • Majeau GR, Meier W, Jimmo B, Kioussis D, Hochman PS. Mechanism of lymphocyte function-associated molecule 3-Ig fusion proteins inhibition of T cell responses. Structure/function analysis in vitro and in human CD2 transgenic mice. J Immunol 1994; 152: 2753–2767
  • da Silva AJ, Brickelmaier M, Majeau GR, Li Z, Su L, Hsu YM, Hochman PS. Alefacept, an immunomodulatory recombinant LFA-3/IgG1 fusion protein, induces CD16 signaling and CD2/CD16-dependent apoptosis of CD2(+) cells. J Immunol 2002; 168: 4462–4471
  • Lebwohl M, Christophers E, Langley R, Ortonne JP, Roberts J, Griffiths CE. An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 2003; 139: 719–727
  • Krueger GG. Selective targeting of T cell subsets: Focus on alefacept–a remittive therapy for psoriasis. Expert Opin Biol Ther 2002; 2: 431–441
  • Ellis CN, Krueger GG. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 2001; 345: 248–255
  • Gordon KB, Vaishnaw AK, O'Gorman J, Haney J, Menter A. Treatment of psoriasis with alefacept: Correlation of clinical improvement with reductions of memory T-cell counts. Arch Dermatol 2003; 139: 1563–1570
  • Biogen IDEC [Internet]., Amevive® (Alefacept) appears to improve patients' psoriatic arthritis in phase II study.[cited 2005 July 25] Available: http://www.biogenidec.com/news/BiogenIDECPR_068.htm
  • Werther WA, Gonzalez TN, O'Connor SJ, McCabe S, Chan B, Hotaling T, Champe M, Fox JA, Jardieu PM, Berman PW, Presta LG. Humanization of an anti-lymphocyte function-associated antigen (LFA)-1 monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J Immunol 1996; 157: 4986–4995
  • Cather JC, Abramovits W. Investigational therapies for psoriasis. J Am Acad Dermatol 2003; 49: S133–S138
  • Gottlieb A, Krueger JG, Bright R, Ling M, Lebwohl M, Kang S, Feldman S, Spellman M, Wittkowski K, Ochs HD, Jardieu P, Bauer R, White M, Dedrick R, Garovoy M. Effects of administration of a single dose of a humanized monoclonal antibody to CD11a on the immunobiology and clinical activity of psoriasis. J Am Acad Dermatol 2000; 42: 428–435
  • Gordon KB, Papp KA, Hamilton TK, Walicke PA, Dummer W, Li N, Bresnahan BW, Menter A. Efalizumab for patients with moderate to severe plaque psoriasis: A randomized controlled trial. JAMA 2003; 290: 3073–3080
  • Papp K, Bissonnette R, Krueger JG, Carey W, Gratton D, Gulliver WP, Lui H, Lynde CW, Magee A, Minier D, Ouellet JP, Patel P, Shapiro J, Shear NH, Kramer S, Walicke P, Bauer R, Dedrick RL, Kim SS, White M, Garovoy MR. The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J Am Acad Dermatol 2001; 45: 665–674
  • Genetech and Xoma [Internet]. Raptiva.[cited 2005 July 24] http://www.raptiva.com/safety/index.jsp
  • Elices MJ. Natalizumab. Elan/Biogen. Curr Opin Investig Drugs 2003; 4: 1354–1362
  • Kumpfel T, Heydari N, Hohlfeld R. Antegren (natalizumab). A promising new approach to therapy of multiple sclerosis. Nervenarzt 2002; 73: 552–555
  • Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnalek P, Zadorova Z, Palmer T, Donoghue S. Natalizumab for active Crohn's disease. N Engl J Med 2003; 348: 24–32
  • van Assche G, Rutgeerts P. Antiadhesion molecule therapy in inflammatory bowel disease. Inflamm Bowel Dis 2002; 8: 291–300
  • Weinberg JM, Saini R, Tutrone WD. Biologic therapy for psoriasis—the first wave: Infliximab, etanercept, efalizumab, and alefacept. J Drugs Dermatol 2002; 1: 303–310
  • Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: The ARMADA trial. Arthritis Rheum 2003; 48: 35–45
  • Maini R, Clair EW, St, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: A randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354: 1932–1939
  • Antoni C, Krueger GG, de Vlam K, Birbara C, Beutler A, Guzzo C, Zhou B, Dooley LT, Kavanaugh A. Infliximab improves signs and symptoms of psoriatic arthritis: Results of the IMPACT 2 trial. Ann Rheum Dis 2005
  • Sandborn WJ. New concepts in anti-tumor necrosis factor therapy for inflammatory bowel disease. Rev Gastroenterol Disord 2005; 5: 10–18
  • Choy EH, Hazleman B, Smith M, Moss K, Lisi L, Scott DG, Patel J, Sopwith M, Isenberg DA. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: A phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford) 2002; 41: 1133–1137
  • Choy EH, Rankin EC, Kassimos D, Vetterlein O, Garyfallos A, Ravirajan CT, Sopwith M, Eastell R, Kingsley GH, Isenberg DA, Panayi GS. The engineered human anti-tumor necrosis factor-alpha antibody CDP571 inhibits inflammatory pathways but not T cell activation in patients with rheumatoid arthritis. J Rheumatol 1999; 26: 2310–2317
  • Williams JD, Griffiths CE. Cytokine blocking agents in dermatology. Clin Exp Dermatol 2002; 27: 585–590
  • Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A, Gottlieb AB. Etanercept as monotherapy in patients with psoriasis. N Engl J Med 2003; 349: 2014–2022
  • Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340: 253–259
  • Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, Weaver AL, Keystone EC, Furst DE, Mease PJ, Ruderman EM, Horwitz DA, Arkfeld DG, Garrison L, Burge DJ, Blosch CM, Lange ML, McDonnell ND, Weinblatt ME. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med 1999; 130: 478–486
  • Ghoreschi K, Thomas P, Breit S, Dugas M, Mailhammer R, van Eden W, van der Zee R, Biedermann T, Prinz J, Mack M, Mrowietz U, Christophers E, Schlondorff D, Plewig G, Sander CA, Rocken M. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 2003; 9: 40–46
  • Ghoreschi KRM. Immune deviation strategies in the therapy of psoriasis. Curr Drug Targets Inflamm Allergy 2004; 3: 193–198
  • Ehrenstein MREJ, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200: 277–285
  • Breshnihan B. Anakinra as a new therapeutic option in rheumatoid arthritis: Clinical results and perspectives. Clin Exp Rheumatol 2002; 20(5 Suppl 27)S32–S34
  • Bresnihan B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 2001; 30: 17–20
  • Bresnihan B, Newmark R, Robbins S, Genant HK. Effects of anakinra monotherapy on joint damage in patients with rheumatoid arthritis. Extension of a 24-week randomized, placebo-controlled trial. J Rheumatol 2004; 31: 1103–1111
  • Jiang Y, Genant HK, Watt I, Cobby M, Bresnihan B, Aitchison R, McCabe D. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: Radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 2000; 43: 1001–1009
  • Waldmann TA. The multi-subunit interleukin-2 receptor. Annu Rev Biochem 1989; 58: 875–911
  • Owen CM, Harrison PV. Successful treatment of severe psoriasis with basiliximab, an interleukin-2 receptor monoclonal antibody. Clin Exp Dermatol 2000; 25: 195–197
  • Mrowietz U, Zhu K, Christophers E. Treatment of severe psoriasis with anti-CD25 monoclonal antibodies. Arch Dermatol 2000; 136: 675–676
  • Salim A, Emerson RM, Dalziel KL. Successful treatment of severe generalized pustular psoriasis with basiliximab (interleukin-2 receptor blocker). Br J Dermatol 2000; 143: 1121–1122
  • Van Assche G, Dalle I, Noman M, Aerden I, Swijsen C, Asnong K, Maes B, Ceuppens J, Geboes K, Rutgeerts P. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol 2003; 98: 369–376
  • Protein Designs Labs [Internet]. Daclizumab (anti-CD25).[cited 2005 July 24] http://www.pdl.com/index.cfm?navId=99
  • Asadullah K, Sterry W, Trefzer U. Cytokines: Interleukin and interferon therapy in dermatology. Clin Exp Dermatol 2002; 27: 578–584
  • Trepicchio WL, Ozawa M, Walters IB, Kikuchi T, Gilleaudeau P, Bliss JL, Schwertschlag U, Dorner AJ, Krueger JG. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J Clin Invest 1999; 104: 1527–1537
  • Mrowietz U, Christophers E, Altmeyer P. Treatment of severe psoriasis with fumaric acid esters: Scientific background and guidelines for therapeutic use. The German Fumaric Acid Ester Consensus Conference. Br J Dermatol 1999; 141: 424–429
  • Mrowietz U, Asadullah K. Dimethylfumarate for psoriasis: More than a dietary curiosity. Trends Mol Med 2005; 11: 43–48
  • Ormerod AD, Mrowietz U. Fumaric acid esters, their place in the treatment of psoriasis. Br J Dermatol 2004; 150: 630–632
  • Biogen Idec [Internet]. Product Pipeline.[cited 2005 July 24] Available: http://www.biogen.com/site/025.html
  • Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H, Madhok R, Campbell C, Gracie JA, Liew FY, McInnes IB. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol 2003; 170: 1524–1530
  • Stuve O, Youssef S, Steinman L, Zamvil SS. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr Opin Neurol 2003; 16: 393–401
  • Palaszynski KM, Liu H, Loo KK, Voskuhl RR. Estriol treatment ameliorates disease in males with experimental autoimmune encephalomyelitis: Implications for multiple sclerosis. J Neuroimmunol 2004; 149: 84–89
  • Liu HB, Loo KK, Palaszynski K, Ashouri J, Lubahn DB, Voskuhl RR. Estrogen receptor alpha mediates estrogen's immune protection in autoimmune disease. J Immunol 2003; 171: 6936–6940
  • Srinivasan SK, Iversen P. Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J Clin Lab Anal 1995; 9: 129–137
  • Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, Tami J, Yu R, Gibiansky E, Shanahan WR. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn's disease. Gut 2002; 51: 30–36
  • Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, Hahn EG, Krummenerl T, Steinmann G. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn's disease. Gastroenterology 2001; 120: 1339–1346
  • Yacyshyn BR, Barish C, Goff J, Dalke D, Gaspari M, Yu R, Tami J, Dorr FA, Sewell KL. Dose ranging pharmacokinetic trial of high-dose alicaforsen (intercellular adhesion molecule-1 antisense oligodeoxynucleotide) (ISIS 2302) in active Crohn's disease. Aliment Pharmacol Ther 2002; 16: 1761–1770
  • Gewirtz AT, Sitaraman SA. Isis Pharmaceuticals. Curr Opin Investig Drugs 2001; 2: 1401–1406
  • Kennewell P. Technology evaluation: ISIS-104838, OraSense. Curr Opin Mol Ther 2003; 5: 76–80
  • Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 2004; 173: 4331–4341
  • Zon G. Antisense phosphorothioate oligodeoxynucleotides: Introductory concepts and possible molecular mechanisms of toxicity. Toxicol Lett 1995; 82-83: 419–424
  • Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 1981; 292: 60–61
  • Holoshitz J, Frenkel A, Ben-Nun A, Cohen IR. Autoimmune encephalomyelitis (EAE) mediated or prevented by T lymphocyte lines directed against diverse antigenic determinants of myelin basic protein. Vaccination is determinant specific. J Immunol 1983; 131: 2810–2813
  • Lider O, Shinitzky M, Cohen IR. Vaccination against experimental autoimmune diseases using T lymphocytes treated with hydrostatic pressure. Ann NY Acad Sci 1986; 475: 267–273
  • Lider O, Karin N, Shinitzky M, Cohen IR. Therapeutic vaccination against adjuvant arthritis using autoimmune T cells treated with hydrostatic pressure. Proc Natl Acad Sci USA 1987; 84: 4577–4580
  • Maron R, Zerubavel R, Friedman A, Cohen IR. T lymphocyte line specific for thyroglobulin produces or vaccinates against autoimmune thyroiditis in mice. J Immunol 1983; 131: 2316–2322
  • Kakimoto K, Katsuki M, Hirofuji T, Iwata H, Koga T. Isolation of T cell line capable of protecting mice against collagen-induced arthritis. J Immunol 1988; 140: 78–83
  • Beraud E, Kotake S, Caspi RR, Oddo SM, Chan CC, Gery I, Nussenblatt RB. Control of experimental autoimmune uveoretinitis by low dose T cell vaccination. Cell Immunol 1992; 140: 112–122
  • Ben-Yehuda A, Bar-Tana R, Livoff A, Ron N, Cohen IR, Naparstek Y. Lymph node cell vaccination against the lupus syndrome of MRL/lpr/lpr mice. Lupus 1996; 5: 232–236
  • Elias D, Reshef T, Birk OS, van der Zee R, Walker MD, Cohen IR. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci USA 1991; 88: 3088–3091
  • Correale J, Lund B, McMillan M, Ko DY, McCarthy K, Weiner LP. T cell vaccination in secondary progressive multiple sclerosis. J Neuroimmunol 2000; 107: 130–139
  • Cohen JI. Toward understanding the molecular basis for attenuation of picornaviruses. Adv Virus Res 1989; 36: 153–180
  • Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen IR. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 1988; 239: 181–183
  • Achiron A, Lavie G, Kishner I, Stern Y, Sarova-Pinhas I, Ben-Aharon T, Barak Y, Raz H, Lavie M, Barliya T, Faibel M, Cohen IR, Mandel M. T cell vaccination in multiple sclerosis relapsing-remitting nonresponders patients. Clin Immunol 2004; 113: 155–160
  • Zhang JZ, Rivera VM, Tejada-Simon MV, Yang D, Hong J, Li S, Haykal H, Killian J, Zang YC. T cell vaccination in multiple sclerosis: Results of a preliminary study. J Neurol 2002; 249: 212–218
  • Zhang J, Raus J. Clonal depletion of human myelin basic protein-reactive T-cells by T-cell vaccination. Ann NY Acad Sci 1995; 756: 323–326
  • Medaer R, Stinissen P, Truyen L, Raus J, Zhang J. Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: Pilot trial in multiple sclerosis. Lancet 1995; 346: 807–808
  • Acha-Orbea H, Mitchell DJ, Timmermann L, Wraith DC, Tausch GS, Waldor MK, Zamvil SS, McDevitt HO, Steinman L. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988; 54: 263–273
  • Olsson T, Edenius C, Ferm M, Samuelson P, Torrang A, Wallstrom E, Khademi M, Andersson M, Arfors L. Depletion of Vbeta5.2/5.3 T cells with a humanized antibody in patients with multiple sclerosis. Eur J Neurol 2002; 9: 153–164
  • Bourdette DN, Whitham RH, Chou YK, Morrison WJ, Atherton J, Kenny C, Liefeld D, Hashim GA, Offner H, Vandenbark AA. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J Immunol 1994; 152: 2510–2519
  • Sakai K, Zamvil SS, Mitchell DJ, Lim M, Rothbard JB, Steinman L. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 1988; 19: 21–32
  • Howell MD, Winters ST, Olee T, Powell HC, Carlo DJ, Brostoff SW. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 1989; 246: 668–670
  • Vandenbark AA, Hashim G, Offner H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 1989; 341: 541–544
  • Wilson DB, Golding AB, Smith RA, Dafashy T, Nelson J, Smith L, Carlo DJ, Brostoff SW, Gold DP. Results of a phase I clinical trial of a T-cell receptor peptide vaccine in patients with multiple sclerosis. I. Analysis of T-cell receptor utilization in CSF cell populations. J Neuroimmunol 1997; 76: 15–28
  • Morgan EE, Nardo CJ, Diveley JP, Kunin J, Bartholomew RM, Moss RB, Carlo DJ. Vaccination with a CDR2 BV6S2/6S5 peptide in adjuvant induces peptide-specific T-cell responses in patients with multiple sclerosis. J Neurosci Res 2001; 64: 298–301
  • Vandenbark AA, Morgan E, Bartholomew R, Bourdette D, Whitham R, Carlo D, Gold D, Hashim G, Offner H. TCR peptide therapy in human autoimmune diseases. Neurochem Res 2001; 26: 713–730
  • Moreland LW, Heck LW, Jr, Koopman WJ, Saway PA, Adamson TC, Fronek Z, O'Connor RD, Morgan EE, Diveley JP, Richieri SP, Carlo DJ, Brostoff SW. V beta 17 T cell receptor peptide vaccination in rheumatoid arthritis: Results of phase I dose escalation study. J Rheumatol 1996; 23: 1353–1362
  • Moreland LW, Morgan EE, Adamson TC, 3rd, Fronek Z, Calabrese LH, Cash JM, Markenson JA, Matsumoto AK, Bathon J, Matteson EL, Uramoto KM, Weyand CM, Koopman WJ, Heck LW, Strand V, Diveley JP, Carlo DJ, Nardo CJ, Richieri SP, Brostoff SW. T cell receptor peptide vaccination in rheumatoid arthritis: A placebo-controlled trial using a combination of Vbeta3, Vbeta14, and Vbeta17 peptides. Arthritis Rheum 1998; 41: 1919–1929
  • Nitta T, Oksenberg JR, Rao NA, Steinman L. Predominant expression of T cell receptor V alpha 7 in tumor-infiltrating lymphocytes of uveal melanoma. Science 1990; 249: 672–674
  • Oksenberg JR, Sherritt M, Begovich AB, Erlich HA, Bernard CC, Cavalli-Sforza LL, Steinman L. T-cell receptor V alpha and C alpha alleles associated with multiple and myasthenia gravis. Proc Natl Acad Sci USA 1989; 86: 988–992
  • Kumar V, Maglione J, Thatte J, Pederson B, Sercarz E, Ward ES. Induction of a type 1 regulatory CD4 T cell response following V beta 8.2 DNA vaccination results in immune deviation and protection from experimental autoimmune encephalomyelitis. Int Immunol 2001; 13: 835–841
  • Kuhrober A, Schirmbeck R, Reimann J. Vaccination with T cell receptor peptides primes anti-receptor cytotoxic T lymphocytes (CTL) and anergizes T cells specifically recognized by these CTL. Eur J Immunol 1994; 24: 1172–1180
  • Offner H, Vainiene M, Celnik B, Weinberg AD, Buenafe A, Vandenbark AA. Coculture of TCR peptide-specific T cells with basic protein-specific T cells inhibits proliferation, IL-3 mRNA, and transfer of experimental autoimmune encephalomyelitis. J Immunol 1994; 153: 4988–4996
  • Kumar V, Sercarz E. Self-determinant selection and selective regulation. Chem Immunol 1995; 60: 1–19
  • Margalit H, Spouge JL, Cornette JL, Cease KB, Delisi C, Berzofsky JA. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol 1987; 138: 2213–2229
  • Rothbard JB, Taylor WR. A sequence pattern common to T cell epitopes. EMBO J 1988; 7: 93–100
  • Broeren CP, Lucassen MA, van Stipdonk MJ, van der Zee R, Boog CJ, Kusters JG, van Eden W. CDR1 T-cell receptor beta-chain peptide induces major histocompatibility complex class II-restricted T-T cell interactions. Proc Natl Acad Sci USA 1994; 91: 5997–6001
  • Vainiene M, Celnik B, Vandenbark AA, Hashim GA, Offner H. Natural immunodominant and experimental autoimmune encephalomyelitis-protective determinants within the Lewis rat V beta 8.2 sequence include CDR2 and framework 3 idiotopes. J Neurosci Res 1996; 43: 137–145
  • Offner H, Vainiene M, Gold DP, Celnik B, Wang R, Hashim GA, Vandenbark AA. Characterization of the immune response to a secondary encephalitogenic epitope of basic protein in Lewis rats. I. T cell receptor peptide regulation of T cell clones expressing cross-reactive V beta genes. J Immunol 1992; 148: 1706–1711
  • Anthony DD, Heeger PS, Haqqi TM. Immunization with TCR Vbeta10 peptide reduces the frequency of type-II collagen-specific Th1 type T cells in BUB/BnJ (H-2q) mice. Clin Exp Rheumatol 2001; 19: 385–394
  • Waisman A, Ruiz PJ, Hirschberg DL, Gelman A, Oksenberg JR, Brocke S, Mor F, Cohen IR, Steinman L. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 1996; 2: 899–905
  • Miyakoshi A, Yoon WK, Jee Y, Matsumoto Y. Characterization of the antigen specificity and TCR repertoire, and TCR-based DNA vaccine therapy in myelin basic protein-induced autoimmune encephalomyelitis in DA rats. J Immunol 2003; 170: 6371–6378
  • Haga M, Tsuchida M, Hirahara H, Watanabe T, Hayashi JI, Watanabe H, Matsumoto Y, Abo T, Eguchi S. Synergistic effect of anti-T cell receptor monoclonal antibody and 15-deoxyspergualin on cardiac xenograft survival in a mouse-to-rat model. Transplantation 2000; 69: 2613–2621
  • Ciernik IF, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156: 2369–2375
  • Zhu D, Spellerberg MB, Thompsett A, King CA, Hamblin TJ, Stevenson FK. DNA vaccination as cancer immunotherapy. Biochem Soc Trans 1997; 25: 743–747
  • Syrengelas AD, Chen TT, Levy R. DNA immunization induces protective immunity against B-cell lymphoma. Nat Med 1996; 2: 1038–1041
  • Hakim I, Levy S, Levy R. A nine-amino acid peptide from IL-1beta augments antitumor immune responses induced by protein and DNA vaccines. J Immunol 1996; 157: 5503–5511
  • Lu S, Arthos J, Montefiori DC, Yasutomi Y, Manson K, Mustafa F, Johnson E, Santoro JC, Wissink J, Mullins JI, Haynes JR, Letvin NL, Wyand M, Robinson HL. Simian immunodeficiency virus DNA vaccine trial in macaques. J Virol 1996; 70: 3978–3991
  • Barry MA, Lai WC, Johnston SA. Protection against mycoplasma infection using expression-library immunization. Nature 1995; 377: 632–635
  • Pertmer TM, Roberts TR, Haynes JR. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol 1996; 70: 6119–6125
  • Raz E, Tighe H, Sato Y, Corr M, Dudler JA, Roman M, Swain SL, Spiegelberg HL, Carson DA. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sci USA 1996; 93: 5141–5145
  • Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997; 158: 2278–2284
  • Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest 1999; 104: 189–194
  • Balasa B, Boehm BO, Fortnagel A, Karges W, Van Gunst K, Jung N, Camacho SA, Webb SR, Sarvetnick N. Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. Clin Immunol 2001; 99: 241–252
  • Urbanek-Ruiz I, Ruiz PJ, Steinman L, Fathman CG. Immunomodulatory vaccination in autoimmune disease. Endocrinol Metab Clin North Am 2002; 31: 441–456, viii-ix
  • Quintana FJ, Carmi P, Mor F, Cohen IR. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J Immunol 2002; 169: 3422–3428
  • Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: Selective T-cell functions stimulated by altered peptide ligands. Immunol Today 1993; 14: 602–609
  • Bielekova B, Martin R. Antigen-specific immunomodulation via altered peptide ligands. J Mol Med 2001; 79: 552–565
  • Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM. Partial T cell signaling: Altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell 1994; 79: 913–922
  • Crowe PD, Qin Y, Conlon PJ, Antel JP. NBI-5788, an altered MBP83-99 peptide, induces a T-helper 2-like immune response in multiple sclerosis patients. Ann Neurol 2000; 48: 758–765
  • Anderton SM. Peptide-based immunotherapy of autoimmunity: A path of puzzles, paradoxes and possibilities. Immunology 2001; 104: 367–376
  • Yamashiro H, Hozumi N, Nakano N. Development of CD25(+) T cells secreting transforming growth factor-beta1 by altered peptide ligands expressed as self-antigens. Int Immunol 2002; 14: 857–865
  • Paas-Rozner M, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses by up-regulating CD25- and CTLA-4-expressing CD4+ T cells. Proc Natl Acad Sci USA 2003; 100: 6676–6681
  • McDevitt H. Specific antigen vaccination to treat autoimmune disease. Proc Natl Acad Sci USA 2004; 101(Suppl 2)14627–14630
  • Daniel D, Wegmann DR. Intranasal administration of insulin peptide B: 9-23 protects NOD mice from diabetes. Ann NY Acad Sci 1996; 778: 371–372
  • Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc Natl Acad Sci USA 1996; 93: 956–960
  • Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 1999; 12: 121–129
  • Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991; 88: 10252–10256
  • Atkinson MA, Maclaren NK, Luchetta R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 1990; 39: 933–937
  • Muir A, Peck A, Clare-Salzler M, Song YH, Cornelius J, Luchetta R, Krischer J, Maclaren N. Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-gamma transcription. J Clin Invest 1995; 95: 628–634
  • Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): A randomised, double-blind, phase II trial. Lancet 2001; 358: 1749–1753
  • Pedotti R, Sanna M, Tsai M, DeVoss J, Steinman L, McDevitt H, Galli SJ. Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune type 1 diabetes mellitus. BMC Immunol 2003; 4: 2
  • Han B, Serra P, Amrani A, Yamanouchi J, Maree AF, Edelstein-Keshet L, Santamaria P. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: High efficiency of a low-affinity peptide. Nat Med 2005; 11: 645–652
  • Zisman E, Katz-Levy Y, Dayan M, Kirshner SL, Paas-Rozner M, Karni A, Abramsky O, Brautbar C, Fridkin M, Sela M, Mozes E. Peptide analogs to pathogenic epitopes of the human acetylcholine receptor alpha subunit as potential modulators of myasthenia gravis. Proc Natl Acad Sci USA 1996; 93: 4492–4497
  • Dayan M, Sthoeger Z, Neiman A, Abarbanel J, Sela M, Mozes E. Immunomodulation by a dual altered peptide ligand of autoreactive responses to the acetylcholine receptor of peripheral blood lymphocytes of patients with myasthenia gravis. Hum Immunol 2004; 65: 571–577
  • Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000; 6: 1176–1182
  • Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6: 1167–1175
  • Johnson KP, Brooks BR, Ford CC, Goodman A, Guarnaccia J, Lisak RP, Myers LW, Panitch HS, Pruitt A, Rose JW, Kachuck N, Wolinsky JS. Sustained clinical benefits of glatiramer acetate in relapsing multiple sclerosis patients observed for 6 years. Copolymer 1 Multiple Sclerosis Study Group. Mult Scler 2000; 6: 255–266
  • Veldman C, Hohne A, Dieckmann D, Schuler G, Hertl M. Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol 2004; 172: 6468–6475
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199: 971–979
  • Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 2004; 173: 4331–4341
  • Filaci G, Bacilieri S, Fravega M, Monetti M, Contini P, Ghio M, Setti M, Puppo F, Indiveri F. Impairment of CD8+ T suppressor cell function in patients with active systemic lupus erythematosus. J Immunol 2001; 166: 6452–6457
  • Balashov KE, Khoury SJ, Hafler DA, Weiner HL. Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J Clin Invest 1995; 95: 2711–2719
  • Faunce DE, Terajewicz A, Stein-Streilein J. Cutting edge: In vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J Immunol 2004; 172: 1991–1995
  • Molteni M, Rossetti C, Scrofani S, Bonara P, Scorza R, Kohn LD. Regulatory CD8+ T cells control thyrotropin receptor-specific CD4+ clones in healthy subjects. Cancer Detect Prev 2003; 27: 167–174
  • Lee E, Rizzo C, Dionisio R, Nguyen D, Chow S, Spizuoco A, Sinha AA. Autoantigen specific CD8+CD28-IFN-g+ T cells are associated with remittent disease in pemphigus vulgaris. J Invest Dermatol 2005; 124: A15
  • Bluestone JA, Tang Q. Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci USA 2004; 101(Suppl 2)14622–14626
  • Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465
  • Rosenberg SA, Dudley ME. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci USA 2004; 101(Suppl 2)14639–14645
  • US National Institutes of Health and National Library of Medicine [Internet]. ClinicalTrials.gov.[cited 2005 July 24]. Available: http://www.clinicaltrials.gov/ct.
  • Utset TO, Auger JA, Peace D, Zivin RA, Xu D, Jolliffe L, Alegre ML, Bluestone JA, Clark MR. Modified anti-CD3 therapy in psoriatic arthritis: A phase I/II clinical trial. J Rheumatol 2002; 29: 1907–1913
  • Bisikirska BC, Herold KC. Use of anti-CD3 monoclonal antibody to induce immune regulation in type 1 diabetes. Ann NY Acad Sci 2004; 1037: 1–9
  • Kon OM, Sihra BS, Compton CH, Leonard TB, Kay AB, Barnes NC. Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet 1998; 352: 1109–1113
  • Hepburn TW, Totoritis MC, Davis CB. Antibody-mediated stripping of CD4 from lymphocyte cell surface in patients with rheumatoid arthritis. Rheumatology (Oxford) 2003; 42: 54–61
  • Mould DR, Davis CB, Minthorn EA, Kwok DC, Elliott MJ, Luggen ME, Totoritis MC. A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 1999; 66: 246–257
  • Schulze-Koops H, Davis LS, Haverty TP, Wacholtz MC, Lipsky PE. Reduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4. J Rheumatol 1998; 25: 2065–2076
  • Skov L, Kragballe K, Zachariae C, Obitz ER, Holm EA, Jemec GB, Solvsten H, Ibsen HH, Knudsen L, Jensen P, Petersen JH, Menne T, Baadsgaard O. HuMax-CD4: A fully human monoclonal anti-CD4 antibody for the treatment of psoriasis vulgaris. Arch Dermatol 2003; 139: 1433–1439
  • Makhlouf L, Grey ST, Dong V, Csizmadia E, Arvelo MB, Auchincloss H, Jr, Ferran C, Sayegh MH. Depleting anti-CD4 monoclonal antibody cures new-onset diabetes, prevents recurrent autoimmune diabetes, and delays allograft rejection in nonobese diabetic mice. Transplantation 2004; 77: 990–997
  • AntisenseLimited [Internet]. ATL-1102[cited 2005 July 24]. Available: http://www.antisense.com.au/currdev.asp?sid=8&pid=2
  • Maksymowych WP, Blackburn WD, Jr, Tami JA, Shanahan WR, Jr. A randomized, placebo controlled trial of an antisense oligodeoxynucleotide to intercellular adhesion molecule-1 in the treatment of severe rheumatoid arthritis. J Rheumatol 2002; 29: 447–453
  • Feagan BG, Sandborn WJ, Baker JP, Cominelli F, Sutherland LR, Elson CO, Salzberg BA, Archambault A, Bernstein CN, Lichtenstein GR, Heath PK, Cameron S, Hanauer SB. A randomized, double-blind, placebo-controlled trial of CDP571, a humanized monoclonal antibody to tumour necrosis factor-alpha, in patients with corticosteroid-dependent Crohn's disease. Aliment Pharmacol Ther 2005; 21: 373–384
  • Zaller DM, Osman G, Kanagawa O, Hood L. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor V beta-specific antibodies. J Exp Med 1990; 171: 1943–1955
  • Jung S, Kramer S, Schluesener HJ, Hunig T, Toyka K, Hartung HP. Prevention and therapy of experimental autoimmune neuritis by an antibody against T cell receptors-alpha/beta. J Immunol 1992; 148: 3768–3775
  • Stienekemeier M, Weishaupt A, Gold R. Depletion of Vbeta4 TCR does not induce resistance to EAN—further evidence for diversity of TCR usage. J Neuroimmunol 1999; 101: 34–38
  • Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, Spera S, Suraci C, Multari G, Cervoni M, Manca Bitti ML, Matteoli MC, Marietti G, Ferrazzoli F, Cassone Faldetta MR, Giordano C, Sbriglia M, Sarugeri E, Ghirlanda G. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 2000; 43: 1000–1004
  • Group DPTTDS. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002; 346: 1685–1691
  • McKown KM, Carbone LD, Kaplan SB, Aelion JA, Lohr KM, Cremer MA, Bustillo J, Gonzalez M, Kaeley G, Steere EL, Somes GW, Myers LK, Seyer JM, Kang AH, Postlethwaite AE. Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis. Arthritis Rheum 1999; 42: 1204–1208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.