404
Views
52
CrossRef citations to date
0
Altmetric
Original

Complement in lung disease

, &
Pages 387-394 | Published online: 07 Jul 2009

References

  • Guo R-F, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005; 23: 821–852
  • Huber-Lang MS, Younkin EM, Sarma JV, Riedemann N, McGuire SR, Lu KT, Kunkel R, Younger JG, Zetoune FS, Ward PA. Generation of C5a by phagocytic cells. Am J Pathol 2002; 161: 1849–1859
  • Ward PA, Chapitis J, Convoy MC, Lepow IH. Generation by bacterial proteinases of leukotactic factors from human sera and C3 and C5. J Immunol 1973; 110: 1003–1009
  • Ward PA, Zwaivler NJ. Quantitative phagocytosis by neutrophils. II. Release of the C5 cleaving enzyme and inhibition of phagocytosis by rheumatoid factor. J Immunol 1973; 111: 1777–1782
  • Cain SA, Monk PN. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg. J Biol Chem 2002; 277: 7165–7169
  • Ohno M, Hirata T, Enomoto M, Araki T, Ishimaru H, Takahashi TA. A putative chemoattractant receptor C5L2, is expressed in granulocyte and immature dendritic cells but not in mature dendritic cells. Mol Immunol 2000; 37: 407–412
  • Henson PM. Dampening inflammation. Nat Immunol 2005; 6: 1179–1181
  • Ogden CA, deCathelineau A, Hoffman PR, Bratton D, Ghebrehiwet B, Fadok V, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194: 781–795
  • Gao H, Neff T, Ward PA. Regulation of lung inflammation in the model of IgG immune-complex injury. Annu Rev Pathol Mech Dis 2006; 1: 215–242
  • Desai U, Kreutzer DL, Showell HT, Arroyave CV, Ward PA. Acute pulmonary reactions induced by chemotactic factor. Am J Pathol 1979; 96: 71–83
  • Henson PM, McCarthy KM, Larsen GL. Complement fragments, pulmonary macrophages and alveolitis. Am J Pathol 1979; 97: 93–105
  • Larsen GL, McCarthy KM, Webster RV, Henson T, Henson PM. A differential effect of C5a and C5a desArg in the induction of pulmonary inflammation. Am J Pathol 1980; 100: 179–191
  • Mulligan MS, Schmid E, Beck-Schimmer B, Till GO, Friedl HP, Brauer RB, Hugli TE, Miyasaka M, Warner RL, Johnson KJ, Ward PA. Requirement and role of C5a in acute lung inflammatory injury in rats. J Clin Invest 1996; 98: 503–512
  • Bozic CR, Lu B, Hopken UE, Gerard C, Gerard NP. Neurogenic amplification of immune complex inflammation. Science 1996; 273: 1823–1825
  • Heller T, Hennecke M, Baumann U, Gessner JE, zuVilsendorf AM, Baensch M, Boulay F, Kola A, Klos A, Bautsch W, Kohl J. Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 1999; 163: 985–994
  • Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE, Gessner JE. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgRs in immune complex-induced lung disease. J Clin Invest 2002; 110: 1823–1830
  • Ravetch JV. A full complement of receptors in immune complex diseases. J Clin Invest 2002; 110: 1760–1761
  • Gerard NP, Lu B, Liu P, Craig S, Fujiwara Y, Okinaga S, Gerard C. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 2005; 280: 39677–39680
  • Gao H, Guo RF, Speyer CL, Reuben J, Neff TA, Hoesel LM, Riedemann NC, McClintock SD, Sarma JV, Rooijen NV, Zetoune FS, Ward PA. Stat3 activation in acute lung injury. J Immunol 2004; 172: 7703–7712
  • Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA. Regulatory effects of in trinsic IL-10 in IgG immune complex-induced lung injury. J Immunol 1995; 154: 3454–3460
  • Huber-Lang MS, Younkin EM, Sarma JV, McGuire SR, Lu KT, Guo RF, Padgaonkar VA, Curnutte JT, Erickson R, Ward PA. Complement induced impairment of innate immunity during sepsis. J Immunol 2002; 169: 3223–3231
  • Strunk RC, Eidler DM, Mason RJ. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternate complement pathways. J Clin Invest 1988; 81: 1419–1426
  • Rothman BL, Merrow M, Despins A, Kennedy T, Kreutzer DL. Effect of lipopolysccharide on C3 and C5 production by human lung cells. J Immunol 1989; 143: 196–202
  • Varsano S., Kaminsky M., Kaiser M., Rashkovsky L. Generation of complement C3 and expression of cell membrane complement inhibitory proteins by human bronchial epithelial cell line. Thorax 2000; 55: 364–369
  • Hawlisch H, Wills-Karp M, Karp CL, Kohl J. The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma. Mol Immunol 2004; 41: 123–131
  • Drouin SM, Cory DB, Hollman TJ, Kildsgaard J, Wetsel RA. Absence of the complement anaphylatoxin C3a receptor suppressesTh2 effector functions in a murine model of pulmonary allergy. J Immunol 2002; 169: 5926–5933
  • Humbles AA, Lu B, Nilsson CA, Lilly C, Israel E, Fujiwara Y, Gerard NP, Gerard C. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 2000; 406: 998–1001
  • Drouin SM, Kildsgaard J, Haviland J, Zabna J, Jia HP, McCray PB, jr, Tack BF, Wetsel RA. Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol 2001; 166: 2025–2032
  • Abe M, Shibata K, Akatsu H, Shimizu N, Sakata N, Katsuragi T, Okada H. Contribution of anaphylatoxin C5a to late airway responses after repeated exposure of antigen to allergic rats. J Immunol 2001; 167: 4651–4660
  • Peng T, Hao L, Madri JA, Su X, Elias JA, Stahl GL, Squinto S, Wang Y. Role of C5 in the development of airway inflammation, airway hyperresponsiveness, and ongoing airway response. J Clin Invest 2005; 115: 1590–1600
  • Baelder R, Fuchs B, Bautsch W, Zwirner J, Kohl J, Hoymann HG, Glaab T, Erpenbeck V, Krug N, Braun A. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. J Immunol 2005; 174: 783–789
  • Gavett SH, O'Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsivenss, inflammation and Th2 cytokine expression in mice. J Exp Med 1995; 182: 1527–1536
  • Takafuji S, Ishida A, Miyakuni Y, Nakagawa T. Matrix metalloproteinase-9 release from human leukocytes. J Invest Allergol Clin Immunol 2003; 13: 50–55
  • Stimler NP, Bach MK, Bloor CM, Hugli TE. Release of leukotrienes from guinea pig lung stimulated by C5a desArg anaphylatoxin. J Immunol 1982; 128: 2247–2252
  • Krug N, Tschernig T, Erpenbeck VJ, Holfeld JM, Kohl J. Complement factors C3a and C5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma. Am J Respir Crit Care Med 2001; 164: 1841–1843
  • Nakano Y, Morita S, Kawamoto A, Suda T, Chida K, Nakamura H. Elevated complement C3a in plasma from patients with severe acute asthma. J Allergy Clin Immunol 2003; 112: 525–530
  • Wu J., Kobayashi M., Sousa E.A., Liu W., Cai J., Goldman S.J., Dorner A.J., Projan S.J., Kavuru M.S., Qiu Y., Thomassen M.J. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteom 2005; 4(9)1251–1264
  • Fregonese L, Swan FJ, van Schadewijk A, Dolhnikoff M, Santos MA, Daha MR, Stolk J, Tschernig T, Sterk PJ, Hiemstra PS, Rabe KF, Mauad T. Expression of the anaphylatoxin receptors C3aR and C5aR is increased in fatal asthma. J Allergy Clin Immunol 2005; 115: 1148–1154
  • Hasegawa K, Tamari M, Shao C, Shimizu M, Takahashi N, Mao X-Q, Yamasaki A, Kamada F, Doi S, Fujiwara H, Miyatake A, Fujita K, Tamura G, Matsubara Y, Shirakawa T, Suzuki Y. Variations in the C3, C3a receptor, and C5 genes affect susceptibility to bronchial asthma. Hum Genet 2004; 115: 295–301
  • Barnes KC, Grant AV, Baltadzhieva D, Zhang S, Berg T, Shao L, Zambelli-Weiner A, Anderson W, Nelsen A, Pillai S, Yarnall DP, Dienger K, Ingersoll RG, Scott AF, Fallin MD, Mathias RA, Beaty TH, Garcia JGN, Wills-Karp M. Variations in the gene encoding C3 are associated with asthma and related phenotypes among African Caribbean families. Genes Immun 2006; 7: 27–35
  • Barnes PJ. New treatments for COPD. Nat Rev Drug Discov 2002; 1: 437–446
  • Barnes P.J. Mechanisms in COPD: Differences from Asthma. Chest 2000; 117: 10S–14S
  • Saetta M, Turato G, Maestrelli P., Mapp CE, Fabbri LM. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1304–1309
  • Schleimer RP. Innate immune response and chronic obstructive pulmonary disease: “Terminator” or ‘Terminator 2’. Proc Am Thorac Soc 2005; 2: 342–346
  • Marc MM, Korosec P, Kosnik M, Kern I, Flezar M, Suskovic S, Sorli J. Complement factors C3a, C4a and C5a in chronic obstructive pulmonary disease and asthma. Am J Respir Cell Mol Biol 2004; 31: 216–219
  • Tarlowe MH, Duffy A, Kannan KB, Itagaki K, Lavery RF, Livingston DH, Bankey P, Hauser CJ. Prospective study of neutrophil chemokine responses in trauma patients at risk for pneumonia. Am J Respir Crit Care Med 2005; 171: 753–759
  • Kerr AR, Paterson GK, Riboldi-Tunnicliffe A, Mitchell TJ. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3. Infect Immun 2005; 73: 4245–4252
  • Saeland E, Vidarsson G, Leusen JH, Van Garderen E, Nahm MH, Vile-Weekhout H, Walraven V, Stemerding AM, Verbeek JS, Rijkers GT, Kuis W, Sanders EA, Van de Winkel JG. Central role of complement in passive protection by human IgG1 and IgG2 anti-pneumococcal antibodies in mice. J Immunol 2003; 170: 6158–6164
  • Younger JG, Shankar-Sinha S, Mickiewicz M, Brinkman AS, Valencia GA, Sarma JV, Younkin EM, Standiford TJ, Zetoune FS, Ward PA. Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. Am J Respir Cell Mol Biol 2003; 29: 432–438
  • Mueller-Ortez S, Drouin SM, Wetsel RA. The alternate pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 2004; 72: 2899–2906
  • Hopken UE, Lu B, Gerard NP, Gerard C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 1996; 383: 86–89
  • Mold C, Rodic-Polic B, Du Clos TW. Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J Immunol 2002; 168: 6375–6381
  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 2000; 68: 688–693
  • DeAstorza B, Cortes G, Crespi C, Saus C, Rojo JM, Alberti S. C3 promotes clearance of Klebsiella pneumoniae by A549 epithelial cells. Infect Immun 2004; 72: 1767–1774
  • Kopf M, Abel B, Gallimore A, Carroll M, Bachmann MF. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med 2002; 8: 373–378
  • Robbins RA, Russ WD, Rasmussen JK, Clayton MM. Activation of the complement system in the adult respiratory distress syndrome. Am Rev Respir Dis 1987; 135: 651–658
  • Langlois PF, Gawryl MS. Accentuated formation of the terminal C5B-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138: 368–375
  • Zilow G, Sturm JA, Rother U, Kirschfink M. Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin Exp Immunol 1990; 79: 154–157
  • Hawlisch H, Belkaid Y, Baelder R, Hildman D, Gerard C, Kohl J. C5a negatively regulates Toll-like receptor 4 induced immune responses. Immunity 2005; 22: 415–426

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.