314
Views
32
CrossRef citations to date
0
Altmetric
Original

Complement regulatory proteins and autoimmunity

Pages 403-410 | Published online: 07 Jul 2009

References

  • Song WC, Sarrias MR, Lambris JD. Complement and innate immunity. Immunopharmacology 2000; 49: 187–198
  • Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058–1066
  • Walport MJ. Complement. Second of two parts. N Engl J Med 2001; 344: 1140–1144
  • Song WC. Membrane complement regulatory proteins in autoimmune and inflammatory tissue injury. Curr Dir Autoimmun 2004; 7: 181–199
  • Botto M, Dell'Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19: 56–59
  • Chen Z, Koralov SB, Kelsoe G. Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 2000; 192: 1339–1352
  • Prodeus AP, Goerg S, Shen LM, Pozdnyakova OO, Chu L, Alicot EM, Goodnow CC, Carroll MC. A critical role for complement in maintenance of self-tolerance. Immunity 1998; 9: 721–731
  • Kim DD, Song WC. Membrane complement regulatory proteins. Clin Immunol 2006; 118: 127–136
  • Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF. Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci USA 1983; 80: 5066–5070
  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 1983; 80: 5430–5434
  • Rosse WF, Parker CJ. Paroxysmal nocturnal haemoglobinuria. Clin Haematol 1985; 14: 105–125
  • Lublin DM, Atkinson JP. Decay-accelerating factor: Biochemistry, molecular biology, and function. Annu Rev Immunol 1989; 7: 35–58
  • Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF. Isolation of a human erythrocyte membrane glycoprotein with decay- accelerating activity for C3 convertases of the complement system. J Immunol 1982; 129: 184–189
  • Parker CJ. Historical aspects of paroxysmal nocturnal haemoglobinuria: ‘Defining the disease’. Br J Haematol 2002; 117: 3–22
  • Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, Kinoshita T. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 1994; 330: 249–255
  • Telen MJ, Hall SE, Green AM, Moulds JJ, Rosse WF. Identification of human erythrocyte blood group antigens on decay- accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J Exp Med 1988; 167: 1993–1998
  • Telen MJ, Green AM. The Inab phenotype: Characterization of the membrane protein and complement regulatory defect. Blood 1989; 74: 437–441
  • Lublin DM, Mallinson G, Poole J, Reid ME, Thompson ES, Ferdman BR, Telen MJ, Anstee DJ, Tanner MJ. Molecular basis of reduced or absent expression of decay-accelerating factor in cromer blood group phenotypes. Blood 1994; 84: 1276–1282
  • Wang L, Uchikawa M, Tsuneyama H, Tokunaga K, Tadokoro K, Juji T. Molecular cloning and characterization of decay-accelerating factor deficiency in cromer blood group Inab phenotype. Blood 1998; 91: 680–684
  • Spicer AP, Seldin MF, Gendler SJ. Molecular cloning and chromosomal localization of the mouse decay- accelerating factor genes. Duplicated genes encode glycosylphosphatidylinositol-anchored and transmembrane forms. J Immunol 1995; 155: 3079–3091
  • Song WC, Deng C, Raszmann K, Moore R, Newbold R, McLachlan JA, Negishi M. Mouse decay-accelerating factor: Selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form. J Immunol 1996; 157: 4166–4172
  • Holers VM, Kinoshita T, Molina H. The evolution of mouse and human complement C3-binding proteins: Divergence of form but conservation of function. Immunol Today 1992; 13: 231–236
  • Li B, Sallee C, Dehoff M, Foley S, Molina H, Holers VM. Mouse Crry/p65. Characterization of monoclonal antibodies and the tissue distribution of a functional homologue of human MCP and DAF. J Immunol 1993; 151: 4295–4305
  • Sun X, Funk CD, Deng C, Sahu A, Lambris JD, Song WC. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci USA 1999; 96: 628–633
  • Sogabe H, Nangaku M, Ishibashi Y, Wada T, Fujita T, Sun X, Miwa T, Madaio MP, Song WC. Increased susceptibility of decay-accelerating factor deficient mice to anti-glomerular basement membrane glomerulonephritis. J Immunol 2001; 167: 2791–2797
  • Hanafusa N, Sogabe H, Yamada K, Wada T, Fujita T, Nangaku M. Contribution of genetically engineered animals to the analyses of complement in the pathogenesis of nephritis. Nephrol Dial Transplant 2002; 9(17 Suppl)34–36
  • Liu J, Miwa T, Hilliard B, Chen Y, Lambris JD, Wells AD, Song WC. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med 2005; 201: 567–577
  • Linington C, Morgan BP, Scolding NJ, Wilkins P, Piddlesden S, Compston DA. The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 1989; 112: 895–911
  • Mead RJ, Neal JW, Griffiths MR, Linington C, Botto M, Lassmann H, Morgan BP. Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis. Lab Invest 2004; 84: 21–28
  • Hilliard B, Wilmen A, Seidel C, Liu TS, Goke R, Chen Y. Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J Immunol 2001; 166: 1314–1319
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Cohen PL, Eisenberg RA. Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991; 9: 243–269
  • Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 2004; 65: 129–138
  • Sekine H, Reilly CM, Molano ID, Garnier G, Circolo A, Ruiz P, Holers VM, Boackle SA, Gilkeson GS. Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J Immunol 2001; 166: 6444–6451
  • Watanabe H, Garnier G, Circolo A, Wetsel RA, Ruiz P, Holers VM, Boackle SA, Colten HR, Gilkeson GS. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J Immunol 2000; 164: 786–794
  • Miwa T, Maldonado MA, Zhou L, Sun X, Luo HY, Cai D, Werth VP, Madaio MP, Eisenberg RA, Song WC. Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 2002; 161: 1077–1086
  • Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 1987; 165: 848–864
  • Miwa T, Sun X, Ohta R, Okada N, Harris CL, Morgan BP, Song WC. Characterization of glycosylphosphatidylinositol-anchored decay accelerating factor (GPI-DAF) and transmembrane DAF gene expression in wild-type and GPI-DAF gene knockout mice using polyclonal and monoclonal antibodies with dual or single specificity. Immunology 2001; 104: 207–214
  • Davis LS, Patel SS, Atkinson JP, Lipsky PE. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 1988; 141: 2246–2252
  • Shenoy-Scaria AM, Kwong J, Fujita T, Olszowy MW, Shaw AS, Lublin DM. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 1992; 149: 3535–3541
  • Tosello AC, Mary F, Amiot M, Bernard A, Mary D. Activation of T cells via CD55: Recruitment of early components of the CD3-TCR pathway is required for IL-2 secretion. J Inflamm 1998; 48: 13–27
  • Stefanova I, Horejsi V. Association of the CD59 and CD55 cell surface glycoproteins with other membrane molecules. J Immunol 1991; 147: 1587–1592
  • Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 1991; 254: 1016–1019
  • Hamann J, Eichler W, Hamann D, Kerstens HM, Poddighe PJ, Hoovers JM, Hartmann E, Strauss M, van Lier RA. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J Immunol 1950; 155: 1942–1950
  • Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, Stetler-Stevenson MA, Siebenlist U, Kelly K. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 1996; 157: 5438–5447
  • Hamann J, Vogel B, van Schijndel GM, van Lier RA. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 1996; 184: 1185–1189
  • Qian YM, Haino M, Kelly K, Song WC. Structural characterization of mouse CD97 and study of its specific interaction with the murine decay-accelerating factor (DAF, CD55). Immunology 1999; 98: 303–311
  • Miwa M, Maldonado MA, Zhou L, Yamada K, Gilkeson GS, Eisenberg RA, Song WC. DAF suppresses skin disease in MRL/lpr mice by acting locally as a complement regulator but its effects on other manifestations is complement-independent. Mol Immunol 2004; 41: 278, (abstract)
  • Miwa T, Nonaka M, Okada N, Wakana S, Shiroishi T, Okada H. Molecular cloning of rat and mouse membrane cofactor protein (MCP, CD46): Preferential expression in testis and close linkage between the mouse Mcp and Cr2 genes on distal chromosome 1. Immunogenetics 1998; 48: 363–371
  • Mead R, Hinchliffe SJ, Morgan BP. Molecular cloning, expression and characterization of the rat analogue of human membrane cofactor protein (MCP/CD46). Immunology 1999; 98: 137–143
  • Tsujimura A, Shida K, Kitamura M, Nomura M, Takeda J, Tanaka H, Matsumoto M, Matsumiya K, Okuyama A, Nishimune Y, Okabe M, Seya T. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): Preferential expression in testicular germ cells. Biochem J 1998; 330: 163–168
  • Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000; 287: 498–501
  • Mao D, Wu X, Deppong C, Friend LD, Dolecki G, Nelson DM, Molina H. Negligible role of antibodies and C5 in pregnancy loss associated exclusively with C3-dependent mechanisms through complement alternative pathway. Immunity 2003; 19: 813–822
  • Miwa T, Zhou L, Hilliard B, Molina H, Song WC. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood 2002; 99: 3707–3716
  • Molina H, Miwa T, Zhou L, Hilliard B, Mastellos D, Maldonado MA, Lambris JD, Song WC. Complement-mediated clearance of erythrocytes: Mechanism and delineation of the regulatory roles of Crry and DAF. Decay-accelerating factor. Blood 2002; 100: 4544–4549
  • Kim DD, Miwa T, Song WC. Retrovirus-mediated over-expression of DAF rescues Crry-deficient erythrocytes from acute alternative pathway complement attack (submitted). 2006.
  • Kraus DGJ, Marsh HC, jr, Holers VM. A direct comparison of complement inhibitory capacities of the GPI- and transmembrane forms of mouse DAF to mouse Crry and human rsCR1. Immunopharmacol 2000; 49: 64
  • Miwa T, Zhou L, Tudoran R, Lambris JD, Madaio MP, Nangaku M, Molina H, Song WC. Crry and DAF double deficiency in mice exacerbates nephrotoxic serum-induced proteinuria despite markedly reduced systemic complement activity (submitted). 2006.
  • Davies A, Simmons DL, Hale G, Harrison RA, Tighe H, Lachmann PJ, Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 1989; 170: 637–654
  • Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 1990; 71: 1–9
  • Okada N, Harada R, Fujita T, Okada H. A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement. Int Immunol 1989; 1: 205–208
  • Okada H, Nagami Y, Takahashi K, Okada N, Hideshima T, Takizawa H, Kondo J. 20 KDa homologous restriction factor of complement resembles T cell activating protein. Biochem Biophys Res Commun 1989; 162: 1553–1559
  • Okada N, Harada R, Taguchi R, Okada H. Complete deficiency of 20 KDa homologous restriction factor (HRF20) and restoration with purified HRF20. Biochem Biophys Res Commun 1989; 164: 468–473
  • Rollins SA, Sims PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol 1990; 144: 3478–3483
  • Rollins SA, Zhao J, Ninomiya H, Sims PJ. Inhibition of homologous complement by CD59 is mediated by a species- selective recognition conferred through binding to C8 within C5b-8 or C9 within C5b-9. J Immunol 1991; 146: 2345–2351
  • Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, Tanaka H, Kondo N, Orii T, Okada N, et al. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1990; 323: 1184–1189
  • Richaud-Patin Y, Perez-Romano B, Carrillo-Maravilla E, Rodriguez AB, Simon AJ, Cabiedes J, Jakez-Ocampo J, Llorente L, Ruiz-Arguelles A. Deficiency of red cell bound CD55 and CD59 in patients with systemic lupus erythematosus. Immunol Lett 2003; 88: 95–99
  • Tsunoda S, Kawano M, Koni I, Kasahara Y, Yachie A, Miyawaki T, Seki H. Diminished expression of CD59 on activated CD8+T cells undergoing apoptosis in systemic lupus erythematosus and Sjogren's syndrome. Scand J Immunol 2000; 51: 293–299
  • Qian YM, Qin X, Miwa T, Sun X, Halperin JA, Song WC. Identification and functional characterization of a new gene encoding the mouse terminal complement inhibitor CD59. J Immunol 2000; 165: 2528–2534
  • Baalasubramanian S, Harris CL, Donev RM, Mizuno M, Omidvar N, Song WC, Morgan BP. CD59a is the primary regulator of membrane attack complex assembly in the mouse. J Immunol 2004; 173: 3684–3692
  • Miwa T, Maldonado MA, Zhou L, Eisenberg RA, Song WC. Deletion of CD59a exacerbates autoimmune disease in MRL/lpr mice. Mol Immunol 2004; 41: 278–279, (abstract)
  • Morgan BP, van den Berg CW, Davies EV, Hallett MB, Horejsi V. Cross-linking of CD59 and of other glycosyl phosphatidylinositol-anchored molecules on neutrophils triggers cell activation via tyrosine kinase. EurJ Immunol 1993; 23: 2841–2850
  • Deckert M, Ticchioni M, Mari B, Mary D, Bernard A. The glycosylphosphatidylinositol-anchored CD59 protein stimulates both T cell receptor zeta/ZAP-70-dependent and -independent signaling pathways in T cells. Eur J Immunol 1995; 25: 1815–1822
  • Murray EW, Robbins SM. Antibody cross-linking of the glycosylphosphatidylinositol-linked protein CD59 on hematopoietic cells induces signaling pathways resembling activation by complement. J Biol Chem 1998; 273: 25279–25284
  • Longhi MP, Sivasankar B, Omidvar N, Morgan BP, Gallimore A. Cutting edge: Murine CD59a modulates antiviral CD4+T cell activity in a complement-independent manner. J Immunol 2005; 175: 7098–7102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.