465
Views
56
CrossRef citations to date
0
Altmetric
Original

Carbohydrate recognition systems in autoimmunity

, , , , , , , & show all
Pages 691-704 | Published online: 07 Jul 2009

References

  • Reuter G, Gabius H-J. Eukaryotic glycosylation—whim of nature or multipurpose tool?. Cell Mol Life Sci 1999; 55: 368–422
  • Gabius H-J, André S, Kaltner H, Siebert H-C. The sugar code: Functional lectinomics. Biochim Biophys Acta 2002; 1572: 165–177
  • Gabius H-J, Siebert H-C, André S, Jiménez-Barbero J, Rüdiger H. Chemical biology of the sugar code. Chem Bio Chem 2004; 5: 740–764
  • Laine RA. The information-storing potential of the sugar code. Glycosciences: Status and perspectives, H-J Gabius, S Gabius. Chapman & Hall, London 1997; 1–14
  • Spiro RG. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002; 12: 43R–56R
  • Weerapana E, Imperiali B. Asparagine-linked protein glycosylation: From eukaryotic to prokaryotic systems. Glycobiology 2006; 16(6)91R–101R, Review
  • Gabius H-J. Cell surface glycans: The why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 2006; 26: 43–80
  • Zhang XL. Roles of glycans and glycopeptides in immune system and immune-related diseases. Curr Med Chem 2006; 13(10)1141–1147
  • Van Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001; 11(3)25R–36R, March, Review
  • Schmidt MA, Schmidt MA, Riley LW, Benz I. Sweet new world: Glycoproteins in bacterial pathogens. Trends Microbiol 2003; 11: 554–561
  • Landsteiner K. Ueber Agglutinationserscheinungen normalen menschlichen Blutes. Wien Klin Wochenschr 1901; 14: 1132–1134, (Translation: On agglutination phenomena of normal human blood, in S.H. Boyer (Ed), Papers on Human Genetics, pp. 27–31. Englewood Cliffs, NJ: Prentice-Hall; 1963)
  • Watkins WM. A half century of blood-group antigen research: Some personal recollections. Trends Glycosci Glycotechnol 1999; 11: 391–411
  • Gabius H-J. Glycohistochemistry: The why and how of detection and localization of endogenous lectins. Anat Histol Embryol 2001; 30: 3–31
  • Reuter G, Gabius H-J. Sialic acids. Structure, analysis, metabolism, and recognition. Biol Chem Hoppe-Seyler 1996; 377: 325–342
  • Siebert H-C, Rosen J, Seyrek K, Kaltner H, André S, Bovin NV, Nyholm P-G, Sinowatz F, Gabius H-J. α2,3/α2,6-Sialylation of N-glycans: Non-synonymous signals with marked developmental regulation in bovine reproductive tracts. Biochimie 2006; 88: 399–410
  • Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006; 355: 1143–1155
  • Angata T, Brinkman-van der Linden ECM. I-type lectins. Biochim Biophys Acta 2002; 1572: 294–316
  • Park EI, Mi Y, Unverzagt C, Gabius H-J, Baenziger JU. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid α2,6GalNAc. Proc Natl Acad Sci USA 2005; 102: 17125–17129
  • Geijtenbeek TBH, van Vliet SJ, Engering A, 't Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004; 22: 33–54
  • Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell Microbiol 2005; 7: 481–488
  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23: 901–944
  • Becker DJ, Lowe JB. Fucose: Biosynthesis and biological functions in mammals. Glycobiology 2003; 13: 41R–53R
  • Mizuochi S, Akimoto Y, Imai Y, Hirano H, Irimura T. Unique tissue distribution of a mouse macrophage C-type lectin. Glycobiology 1997; 7(1)137–146
  • Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem 1982; 51: 531–554, Review
  • van den Berg TK, Honing H, Franke N, van Remoortere A, Schiphorst WECM, Liu F-T, Deelder AM, Cummings RD, Hokke CH, van Die I. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol 2004; 173: 1902–1907
  • Sharif M, Rook G, Wilkinson LS, Worrall JG, Edwards JC. Terminal N-acetylglucosamine in chronic synovitis. Br J Rheumatol 1990; 29(1)25–31
  • Mathov I, Plotkin L, Abatangelo C, Galimberti R, Squiquera L, Leoni J. Antibodies from patients with psoriasis recognize N-acetylglucosamine terminals in glycoproteins from Pityrosporum ovale. Clin Exp Immunol 1996; 105(1)79–83, July
  • Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity 2006; 39(1)31–39, February
  • Fukuda NM, Akama TO. The role of N-glycans in spermatogenesis. Cytogenet Genome Res 2003; 103: 302–306
  • Josefsson EC, Gebhard HH, Stossel TP, Hartwig JH, Hoffmeister KM. The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem 2005; 280: 18025–18032
  • Allavena P, Chieppa M, Monti P, Piemonti L. From pattern recognition receptor to regulator of homeostasis: The double-faced macrophage mannose receptor. Crit Rev Immunol 2004; 24: 179–192
  • Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005; 108: 97–110
  • 't Hart BA, van Kooyk Y. Yin-Yang regulation of autoimmunity by DCs. Trends Immunol 2004; 25(7)353–359
  • Bond A, Alavi A, Axford JS, Bourke BE, Bruckner FE, Kerr MA, Maxwell JD, Tweed KJ, Weldon MJ, Youinou P, Hay FC. A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J Autoimmun 1997; 10(1)77–85, February
  • Orlacchio A, Sarchielli P, Gallai V, Datti A, Saccardi C, Palmerini CA. Activity levels of a beta1,6 N-acetylglucosaminyltransferase in lymphomonocytes from multiple sclerosis patients. J Neurol Sci 1997; 151(2)177–183, October 22
  • Tompkins SM, Fuller KG, Miller SD. Theiler's virus-mediated autoimmunity: Local presentation of CNS antigens and epitope spreading. Ann NY Acad Sci 2002; 958: 26–38
  • Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2002; 2(2)77–84
  • Kanazawa N, Tashiro K, Miyachi Y. Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology 2004; 209: 179–190
  • van Kooyk Y, Geijtenbeek TB. DC-SIGN: Escape mechanism for pathogens. Nat Rev Immunol 2003; 3(9)697–709
  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575–585
  • Curtis BM, Scharnowske S, Watson AJ. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA 1992; 89: 8356–8360
  • Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76: 6841–6844
  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197: 823–829
  • Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke-Grauls CM, Geijtenbeek TB, van Kooyk Y. Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cellspecific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 2003; 170: 1635–1639
  • Colmenares M, Puig-Kroger A, Pello OM, Corbi AL, Rivas L. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J Biol Chem 2002; 277: 36766–36769
  • Maeda N, Nigou J, Herrmann JL, Jackson M, Amara A, Lagrange PH, Puzo G, Gicquel B, Neyrolles O. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 2003; 278: 5513–5516
  • Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ, Netea MG, Kullberg BJ, Romani L, Figdor CG. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 2003; 33: 532–538
  • van Lent PL, Figdor CG, Barrera P, van Ginkel K, Sloetjes A, van den Berg WB, Torensma R. Expression of the dendritic cell-associated C-type lectin DC-SIGN by inflammatory matrix metalloproteinase-producing macrophages in rheumatoid arthritis synovium and interaction with intercellular adhesion molecule 3-positive T cells. Arthritis Rheum 2003; 48(2)360–369
  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824
  • Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003; 101(12)4862–4869, June 15
  • Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 2001; 36: 220–234
  • Hawiger D, Masilamani RF, Bettelli E, Kuchroo VK, Nussenzweig MC. Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 2004; 20(6)695–705, June
  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194(6)769–779, September 17
  • Gabius H-J. Animal lectins. Eur J Biochem 1997; 243: 543–576
  • Fraser IP, Koziel H, Ezekowitz RA. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 1998; 10: 363–372
  • Taylor PR, Gordon S, Martinez-Pomares L. The mannose receptor: Linking homeostasis and immunity through sugar recognition. Trends Immunol 2005; 26: 104–110
  • Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: Evidence for a negative signal delivered through the mannose receptor. J Immunol 2001; 166: 7477–7485
  • Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 1997; 6(2)187–197, February
  • Fiete D, Beranek MC, Baenziger JU. The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides terminating with SO4-4-GalNAcbeta1,4GlcNAcbeta or Man at independent sites. Proc Natl Acad Sci USA 1997; 94(21)11256–11261, October 14
  • Martinez-Pomares L, Kosco-Vilbois M, Darley E, Tree P, Herren S, Bonnefoy JY, Gordon S. Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 1996; 184(5)1927–1937, November 1
  • Mi Y, Shapiro SD, Baenziger JU. Regulation of lutropin circulatory half-life by the mannose/N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. J Clin Invest 2002; 109: 269–276
  • Chazenbalk GD, Pichurin PN, Guo J, Rapoport B, McLachlan SM. Interactions between the mannose receptor and thyroid autoantigens. Clin Exp Immunol 2005; 139(2)216–224
  • Stambach NS, Taylor ME. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 2003; 13(5)401–410
  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000; 12: 71–81
  • Kissenpfennig A, Ait-Yahia S, Clair-Moninot V, Stossel H, Badell E, Bordat Y, Pooley JL, Lang T, Prina E, Coste I, Gresser O, Renno T, Winter N, Milon G, Shortman K, Romani N, Lebecque S, Malissen B, Saeland S, Douillard P. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol Cell Biol 2005; 25: 88–99
  • Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Dambuyant C, Vincent C, Massacrier C, Vincent J, Yoneda K, Banchereau J, Caux C, Davoust J, Saeland S. The monoclonal antibody DCGM4recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 1999; 29: 2695–2704
  • Engering A, Geijtenbeek TB, van Kooyk Y. Immune escape through C-type lectins on dendritic cells. Trends Immunol 2002; 23(10)480–485, October
  • Brown GD. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 2006; 6: 33–43
  • Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, Hirota K, Tanaka S, Nomura T, Miki I, Gordon S, Akira S, Nakamura T, Sakaguchi S. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 2005; 201(6)949–960
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 2003; 197: 1107–1117
  • Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol 2006; 117(5)979–987
  • Armant MA, Fenton MJ. Toll-like receptors: A family of pattern-recognition receptors in mammals. Genome Biol 2002; 3(8)3011, Reviews
  • Roura-Mir C, Wang L, Cheng TY, Matsunaga I, Dascher CC, Peng SL, Fenton MJ, Kirschning C, Moody DB. Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 2005; 175(3)1758–1766
  • Heine H, Lien E. Toll-like receptors and their function in innate and adaptive immunity. Int Arch Allergy Immunol 2003; 130(3)180–192
  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195(1)99–111
  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168(10)5233–5239
  • Beg AA. Endogenous ligands of Toll-like receptors: Implications for regulating inflammatory and immune responses. Trends Immunol 2002; 23(11)509–512
  • De Rycke L, Vandooren B, Kruithof E, De Keyser F, Veys EM, Baeten D. Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondylarthropathy. Arthritis Rheum 2005; 52(7)2146–2158
  • Joosten LA, Koenders MI, Smeets RL, Heuvelmans-Jacobs M, Helsen MM, Takeda K, Akira S, Lubberts E, van de Loo FA, van den Berg WB. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: Critical role of myeloid differentiation factor 88. J Immunol 2003; 171(11)6145–6153
  • Radstake TR, Roelofs MF, Jenniskens YM, Oppers-Walgreen B, van Riel PL, Barrera P, Joosten LA, van den Berg WB. Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 2004; 50(12)3856–3865
  • Kyburz D, Rethage J, Seibl R, Lauener R, Gay RE, Carson DA, Gay S. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum 2003; 48(3)642–650
  • Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U, Hantzschel H, Michel BA, Gay RE, Gay S, Kyburz D. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 2004; 172(2)1256–1265
  • Triantafilou K, Triantafilou M. Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol 2004; 78(20)11313–11322
  • Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F, Mantegazza R. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 2005; 167(1)129–139
  • Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 2004; 173(11)7070–7077
  • Racke MK, Hu W, Lovett-Racke AE. PTX cruiser: Driving autoimmunity via TLR4. Trends Immunol 2005; 26(6)289–291
  • Rainer TH. L-selectin in health and disease. Resuscitation 2002; 52(2)127–141
  • Kansas GS. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88(9)3259–3287
  • Kaltner H, Stierstorfer B. Animal lectins as cell adhesion molecules. Acta Anat 1998; 161: 162–179
  • Wilkins PP, Moore KL, McEver RP, Cummings RD. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J Biol Chem 1995; 270(39)22677–22680
  • Bullard DC, Mobley JM, Justen JM, Sly LM, Chosay JG, Dunn CJ, Lindsey JR, Beaudet AL, Staite ND. Acceleration and increased severity of collagen-induced arthritis in P-selectin mutant mice. J Immunol 1999; 163(5)2844–2849
  • Kohm AP, Miller SD. Role of ICAM-1 and P-selectin expression in the development and effector function of CD4+CD25+regulatory T cells. J Autoimmun 2003; 21(3)261–271, November
  • Yang J, Rosen SD, Bendele P, Hemmerich S. Induction of PNAd and N-acetylglucosamine 6-O-sulfotransferases 1 and 2 in mouse collagen-induced arthritis. BMC Immunol 2006; 7: 12
  • Pablos JL, Santiago B, Tsay D, Singer MS, Palao G, Galindo M, Rosen SD. A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-alpha/beta and TNF-alpha in cultured endothelial cells. BMC Immunol 2005; 6(1)6
  • Szanto S, Gal I, Gonda A, Glant TT, Mikecz K. Expression of L-selectin, but not CD44, is required for early neutrophil extravasation in antigen-induced arthritis. J Immunol 2004; 172(11)6723–6734
  • Grewal IS, Foellmer HG, Grewal KD, Wang H, Lee WP, Tumas D, Janeway CA, Jr, Flavell RA. CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis. Immunity 2001; 14(3)291–302
  • Yang XD, Karin N, Tisch R, Steinman L, McDevitt HO. Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc Natl Acad Sci USA 1993; 90(22)10494–10498
  • Lally F, Smith E, Filer A, Stone MA, Shaw JS, Nash GB, Buckley CD, Rainger GE. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum 2005; 52(11)3460–3469
  • Ruth JH, Amin MA, Woods JM, He X, Samuel S, Yi N, Haas CS, Koch AE, Bullard DC. Accelerated development of arthritis in mice lacking endothelial selectins. Arthritis Res Ther 2005; 7(5)R959–R970
  • Carvalho-Tavares J, Hickey MJ, Hutchison J, Michaud J, Sutcliffe IT, Kubes P. A role for platelets and endothelial selectins in tumor necrosis factor-alpha-induced leukocyte recruitment in the brain microvasculature. Circ Res 2000; 87(12)1141–1148
  • Piccio L, Rossi B, Colantonio L, Grenningloh R, Gho A, Ottoboni L, Homeister JW, Scarpini E, Martinello M, Laudanna C, D'Ambrosio D, Lowe JB, Constantin G. Efficient recruitment of lymphocytes in inflamed brain venules requires expression of cutaneous lymphocyte antigen and fucosyltransferase-VII. J Immunol 2005; 174(9)5805–5813
  • Carrithers MD, Visintin I, Kang SJ, Janeway CA, Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000; 123(Pt 6)1092–1101
  • Xu H, Forrester JV, Liversidge J, Crane IJ. Leukocyte trafficking in experimental autoimmune uveitis: Breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci 2003; 44(1)226–234
  • Egerer K, Hertzer J, Feist E, Albrecht A, Rudolph PE, Dorner T, Burmester GR. sE-selectin for stratifying outcome in rheumatoid arthritis. Arthritis Rheum 2003; 49(4)546–548
  • Sumariwalla PF, Malfait AM, Feldmann M. P-selectin glycoprotein ligand 1 therapy ameliorates established collagen-induced arthritis in DBA/1 mice partly through the suppression of tumour necrosis factor. Clin Exp Immunol 2004; 136(1)67–75
  • Galimberti D, Fenoglio C, Clerici R, Comi C, De Riz M, Rottoli M, Piccio L, Ronzoni M, Venturelli E, Monaco F, Poloni M, Bresolin N, Scarpini E. E-selectin A561C and G98T polymorphisms influence susceptibility and course of multiple sclerosis. J Neuroimmunol 2005; 165(1–2)201–205
  • El-Magadmi M, Alansari A, Teh LS, Ordi J, Gul A, Inanc M, Bruce I, Hajeer A. Association of the A561C E-selectin polymorphism with systemic lupus erythematosus in 2 independent populations. J Rheumatol 2001; 28(12)2650–2652
  • Russell AI, Graham DS, Chadha S, Roberton C, Fernandez-Hart T, Griffiths B, D'Cruz D, Nitsch D, Whittaker JC, Vyse TJ. No association between E- and L-selectin genes and SLE: Soluble L-selectin levels do correlate with genotype and a subset in SLE. Genes Immun 2005; 6(5)422–429
  • Kretowski A, Kinalska I. L-selectin gene T668C mutation in type 1 diabetes patients and their first degree relatives. Immunol Lett 2000; 74(3)225–228
  • Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: Biology and disease association. Mol Immunol 2001; 38(2-3)133–149, Review
  • Thiel S, Holmskov U, Hviid L, Laursen SB, Jensenius JC. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol 1992; 90(1)31–35
  • Lu J, Teh C, Kishore U, Reid KB. Collectins and ficolins: Sugar pattern recognition molecules of the mammalian innate immune system. Biochim Biophys Acta 2002; 1572: 387–400
  • Estabrook MM, Jack DL, Klein NJ, Jarvis GA. Mannose-binding lectin binds to two major outer membrane proteins, opacity protein and porin, of Neisseria meningitidis. J Immunol 2004; 172: 3784–3792
  • van Emmerik LC, Kuijper EJ, Fijen CA, Dankert J, Thiel S. Binding of mannan-binding protein to various bacterial pathogens of meningitis. Clin Exp Immunol 1994; 97(3)411–416
  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun. 2000; 68(2)688–693
  • Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem 1987; 262(16)7451–7454
  • Ji YH, Matsushita M, Okada H, Fujita T, Kawakami M. The C4 and C2 but not C1 components of complement are responsible for the complement activation triggered by the Ra-reactive factor. J Immunol 1988; 141(12)4271–4275
  • Schweinle JE, Ezekowitz RA, Tenner AJ, Kuhlman M, Joiner KA. Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest 1989; 84(6)1821–1829
  • Ma Y, Uemura K, Oka S, Kozutsumi Y, Kawasaki N, Kawasaki T. Antitumor activity of mannan-binding protein in vivo as revealed by a virus expression system: Mannan-binding proteindependent cell-mediated cytotoxicity. Proc Natl Acad Sci USA 1999; 96(2)371–375
  • Tsutsumi A, Takahashi R, Sumida T. Mannose binding lectin: Genetics and autoimmune disease. Autoimmun Rev 20052005; 4(6)364–372, Review
  • Ruzittu M, Carla EC, Montinari MR, Maietta G, Dini L. Modulation of cell surface expression of liver carbohydrate receptors during in vivo induction of apoptosis with lead nitrate. Cell Tissue Res 1999; 298(1)105–112
  • Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194(6)781–795
  • Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 2001; 167(5)2861–2868
  • Sato R, Matsushita M, Miyata M, Sato Y, Kasukawa R, Fujita T. Substances reactive with mannose-binding protein (MBP) in sera of patients with rheumatoid arthritis. Fukushima J Med Sci 1997; 43(2)99–111
  • Garred P, Madsen HO, Marquart H, Hansen TM, Sorensen SF, Petersen J, Volck B, Svejgaard A, Graudal NA, Rudd PM, Dwek RA, Sim RB, Andersen V. Two edged role of mannose binding lectin in rheumatoid arthritis: A cross sectional study. J Rheumatol 2000; 27(1)26–34
  • Saevarsdottir S, Vikingsdottir T, Valdimarsson H. The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 2004, Review
  • Rademacher TW, Parekh RB, Dwek RA, Isenberg D, Rook G, Axford JS, Roitt I. The role of IgG glycoforms in the pathogenesis of rheumatoid arthritis. Springer Semin Immunopathol 1988, Review
  • Rademacher TW. Rheumatoid arthritis—a disease of dysregulated glycosylation?. Glycobiology 1991; 1(2)111–112
  • Rademacher TW, Williams P, Dwek RA. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci USA 1994; 91(13)6123–6127
  • Lee YH, Witte T, Momot T, Schmidt RE, Kaufman KM, Harley JB, Sestak AL. The mannose-binding lectin gene polymorphisms and systemic lupus erythematosus: Two case-control studies and a meta-analysis. Arthritis Rheum 2005; 52(12)3966–3974
  • Tsutsumi A, Sasaki K, Wakamiya N, Ichikawa K, Atsumi T, Ohtani K, Suzuki Y, Koike T, Sumida T. Mannose-binding lectin gene: Polymorphisms in Japanese patients with systemic lupus erythematosus, rheumatoid arthritis and Sjogren's syndrome. Genes Immun 2001; 2(2)99–104
  • Gupta B, Agrawal C, Raghav SK, Das SK, Das RH, Chaturvedi VP, Das HR. Association of mannose-binding lectin gene (MBL2) polymorphisms with rheumatoid arthritis in an Indian cohort of case-control samples. J Hum Genet 2005; 50(11)583–591
  • Wang ZY, Morinobu A, Kanagawa S, Kumagai S. Polymorphisms of the mannose binding lectin gene in patients with Sjogren's syndrome. Ann Rheum Dis 2001; 60(5)483–486
  • Cooper DNW. Galectinomics: Finding themes in complexity. Biochim Biophys Acta 2002; 1572: 209–231
  • López-Lucendo MF, Solís D, André S, Hirabayashi J, Kasai K-i, Kaltner H, Gabius H-J, Romero A. Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 2004; 343: 957–970
  • Rappl G, Abken H, Muche JM, Sterry W, Tilgen W, André S, Kaltner H, Ugurel S, Gabius H-J, Reinhold U. CD4+CD7− leukemic T cells from patients with Sézary syndrome are protected from galectin-1-triggered T cell death. Leukemia 2002; 16: 840–845
  • Siebert H-C, André S, Lu S-Y, Frank M, Kaltner H, van Kuik JA, Korchagina EY, Bovin NV, Tajkhorshid E, Kaptein R, Vliegenthart JFG, von der Lieth C-W, Jiménez-Barbero J, Kopitz J, Gabius H-J. Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 2003; 42: 14762–14773
  • André S, Kaltner H, Lensch M, Russwurm R, Siebert H-C, Fallsehr C, Tajkhorshid E, Heck AJR, von Knebel-D—beritz M, Gabius H-J, Kopitz J. Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1 in silico and in vitro on human neuroblastoma cells. Int J Cancer 2005; 114: 46–57
  • Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius H-J, Khachigian L, Detjen K, Rosewicz S. Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem 2005; 280: 37266–37277
  • Unverzagt C, André S, Seifert J, Kojima S, Fink C, Srikrishna G, Freeze H, Kayser K, Gabius H-J. Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional α2,3/α2,6-sialylation: Synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake. J Med Chem 2002; 45: 478–491
  • Wu AM, Wu JH, Tsai M-S, Liu J-H, André S, Wasano K, Kaltner H, Gabius H-J. Fine specificity of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). Biochem J 2002; 367: 653–664
  • Wu AM, Singh T, Wu JH, Lensch M, André S, Gabius H-J. Interaction profile of galectin-5 with free saccharides and mammalian glycoproteins: Probing its fine-specificity and the effect of naturally clustered ligand presentation. Glycobiology 2006; 16: 524–537
  • Dam TK, Gabius H-J, André S, Kaltner H, Lensch M, Brewer CF. Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 2005; 44: 12564–12571
  • Brewer CF. Binding and cross-linking properties of galectins. Biochim Biophys Acta 2002; 1572: 255–262
  • Villalobo A, Nogales-Gonzalés A, Gabius H-J. A guide to signaling pathways connecting protein–glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 2006; 18: 1–37
  • Rotblat B, Niv H, André S, Kaltner H, Gabius H-J, Kloog Y. Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res 2004; 64: 3112–3118
  • Rossi B, Espeli M, Schiff C, Gauthier L. Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J Immunol 2006; 177(2)796–803
  • Smetana KJ, Dvor´nkov´ B, Chovanec M, Boucek J, Klíma J, Motlík J, Lensch M, Kaltner H, André S, Gabius H-J. Nuclear presence of adhesion/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin. Histochem Cell Biol 2006; 125: 171–182
  • Yu X, Siegel R, Roeder RG. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation. J Biol Chem 2006; 281(22)15505–15516
  • Levi G, Tarrab-Hazdai R, Teichberg VI. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol 1983; 13: 500–507
  • Offner H, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, Vandenbark AA. Recombinant human β-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 1990; 28: 177–184
  • Goldstone SD, Lavin MF. Isolation of a cDNA clone, encoding a human β-galactoside binding protein, overexpressed during glucocorticoid-induced cell death. Biochem Biophys Res Commun 1991; 178: 746–750
  • Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY, Browne JM, Hoffmann D, Emmanouilides CE, Territo MC, Baldwin GC. Amelioration of graft versus host disease by galectin-1. Clin Immunol 2003; 109: 295–307
  • Sturm A, Lensch M, André S, Kaltner H, Wiedenmann B, Rosewicz S, Dignass AU, Gabius H-J. Human galectin-2: Novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 2004; 173: 3825–3837
  • Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2004; 176: 778–789
  • Bianco GA, Toscano MA, Ilarregui JM, Rabinovich GA. Impact of protein–glycan interactions in the regulation of autoimmunity and chronic inflammation. Autoimmun Rev 2006; 5(5)349–356
  • Siebert H-C, Born K, André S, Frank M, Kaltner H, von der Lieth C-W, Heck AJR, Jiménez-Barbero J, Kopitz J, Gabius H-J. Carbohydrate chain of ganglioside GM1 as a ligand: Identification of the binding strategies of three 15 mer peptides and their divergence from the binding modes of growth-regulatory galectin-1 and cholera toxin. Chem Eur J 2006; 12: 388–402
  • Yuki N. Carbohydrate mimicry: A new paradigm of autoimmune diseases. Curr Opin Immunol 2005; 17(6)577–582
  • André S, Unverzagt C, Kojima S, Frank M, Seifert J, Fink C, Kayser K, von der Lieth C-W, Gabius H-J. Determination of modulation of ligand properties of synthetic complex-type biantennary N-glycans by introduction of bisecting GlcNAc in silico, in vitro and in vivo. Eur J Biochem 2004; 271: 118–134
  • Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 2005; 83(6)674–686, Review
  • Solís D, Jiménez-Barbero J, Kaltner H, Romero A, Siebert H-C, von der Lieth C-W, Gabius H-J. Towards defining the role of glycans as hardware in information storage and transfer: Basic principles, experimental approaches and recent progress. Cells Tissues Organs 2001; 168: 5–23
  • Cs-Szabo G, Roughley PJ, Plaas AH, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum 1995; 38(5)660–668
  • Cohen IR, Young DB. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12(4)105–110
  • Poletaev A, Osipenko L. General network of natural autoantibodies as immunological homunculus (Immunculus). Autoimmun Rev 2003; 2(5)264–271
  • Quintana FJ, Buzas E, Prohaszka Z, Biro A, Kocsis J, Fust G, Falus A, Cohen IR. Knock-out of the histidine decarboxylase gene modifies the repertoire of natural autoantibodies. J Autoimmun 2004; 22(4)297–305
  • Quintana FJ, Cohen IR. Autoantibody patterns in diabetes-prone NOD mice and in standard C57BL/6 mice. J Autoimmun 2001; 17(3)191–197
  • Quintana FJ, Pitashny M. Cohen IR.Experimental autoimmune myasthenia gravis in naive non-obese diabetic (NOD/LtJ) mice: Susceptibility associated with natural IgG antibodies to the acetylcholine receptor. Int Immunol 2003; 15(1)11–16
  • Glant TT, Buzas EI, Finnegan A, Negroiu G, Cs-Szabo G, Mikecz K. Critical roles of glycosaminoglycan side chains of cartilage proteoglycan (aggrecan) in antigen recognition and presentation. J Immunol 1998; 160(8)3812–3819
  • Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 2005; 202(11)1517–1526
  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005; 434(7032)525–529
  • Mieza MA, Itoh T, Cui JQ, Makino Y, Kawano T, Tsuchida K, Koike T, Shirai T, Yagita H, Matsuzawa A, Koseki H, Taniguchi M. Selective reduction of V alpha 14+ NK T cells associated with disease development in autoimmune-prone mice. J Immunol 1996; 156(10)4035–4040
  • Yang JQ, Saxena V, Xu H, Van Kaer L, Wang CR, Singh RR. Repeated alpha-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 2003; 171(8)4439–4446
  • Oishi Y, Sumida T, Sakamoto A, Kita Y, Kurasawa K, Nawata Y, Takabayashi K, Takahashi H, Yoshida S, Taniguchi M, Saito Y, Iwamoto I. Selective reduction and recovery of invariant Valpha24JalphaQ T cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus. J Rheumatol 2001; 28(2)275–283
  • Linsen L, Somers V, Stinissen P. Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol 2005; 66(12)1193–1202, Review
  • Gabius H-J. Glycomics and the sugar code: Primer to their structural basis and functionality. Immunogenomics and human disease, A Falus. Wiley, Chichester 2006; 23–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.