1,278
Views
77
CrossRef citations to date
0
Altmetric
Original

The blood–brain-barrier in multiple sclerosis: Functional roles and therapeutic targeting

&
Pages 148-160 | Received 24 Jul 2006, Accepted 20 Dec 2006, Published online: 07 Jul 2009

References

  • Pardridge WM. A morphological approach to the analysis of blood–brain-barrier transport function. Brain barrier systems, O Paulson, G Knudsen, T Moos. Munkgaard, Copenhagen 1999; 19–42
  • Abbot NJ, Romero IA. Transporting therapeutics across the blood–brain barrier. Mol Med Today 1996; 2: 106–113
  • Begley D, Brightman MW. Structural and functional aspects of the blood–brain-barrier. Peptide transport and delivery into the central nervous system. Progress in drug research, L Prokai, K Prokai-Tatrai. Birkhauser Verlag, Basel 2003; 39–78
  • Begley DJ. Efflux mechanisms in the central nervous system: A powerful influence on drug distribution within the brain. Blood–spinal cord and brain barriers in health and disease, HS Sharma, J Westman. Elsevier, San Diego, CA 2004; 83–97
  • Prestcott L, Brightman MW. Circunventricular organs of the brain. Introduction to the blood–brain barrier: Methodology, biology and pathology, WM Pardridge. Cambridge University Press, Cambridge 1998; 270–276
  • Raine CS. The Dale McFarlin memorial lecture: The immunology of multiple sclerosis lesions. Ann Neurol 1994; 36: S61–S72
  • Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40: 648–677
  • Lane NJ, Reese TJ, Kacher B. Structural domains of the tight junctional intramembrane fibrils. Tissue Cell 1992; 24: 291–300
  • Bearer EL, Orci L. Endothelial fenestral diaphragms: A quick-freeze, deep-etch study. J Cell Biol 1985; 100: 418–428
  • Dorovini-Zis K, Prameya R, Bowman PD. Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest 1991; 64: 425–436
  • Villegas JC, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood–brain and blood–brain barriers. J Neurocytol 1993; 22: 67–80
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006; 7: 41–53
  • Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood–brain barrier in vitro and the function of cerebral perycites. FASEB J 2002; 16: 1274–1276
  • Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Ligero I, Savettieri G. Synergistic effects of neurons and astrocytes in the differentiation of brain capillary endotelial cells in culture. J Cell Mol Med 2003; 7: 165–170
  • Zenker D, Begley DJ, Bratzke H, Rübsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured bovine and human brain capillary endothelial cells. J Physiol Lond 2003; 551: 1023–1032
  • Fabriek BO, van Haastert ES, Galea I, Polfliet MMJ, Döpp ED, van den Heuvel MM, van den Berg TK, De Groot CJA, van der Valk P, Dijstra CD. CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 2005; 51: 297–305
  • Furuse M, Hirase T, Itoh A, Nagafuchi A, Yomemura S, Tsukita S, Tsukita S. Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123: 1777–1788
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141: 1539–1550
  • Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: Development, composition and regulation. Vasc Pharmacol 2002; 38: 323–337
  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273: 29745–29753
  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junctions, interacts with ZO-1 and occludin. J Cell Biol 1998; 141: 199–208
  • Ebnet K, Schulz CU, Meyer ZU, Brickwedde MK, Pendl GG, Westweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275: 27979–27988
  • Citi S, Sabanay H, Kendrick-Jones J, Geiger B. Cingulin: Characterization and localization. J Cell Sci 1989; 93: 107–122
  • Zhong Y, Saitoh T, Minase T, Sawada N, Enomoto K, Mori M. Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol 1993; 120: 477–483
  • Ebnet K, Suzuki A, Ohno S, Westweber D. Junctional adhesion molecules (JAMS): More molecules with dual functions?. J Cell Sci 2004; 117: 19–29
  • Buckley CD, Doyonnas R, Newton JP, Blystone SD, Brown EJ, Watt SM, Simmons DL. Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 1996; 109: 437–445
  • Muller WA, Berman ME, Newman PJ, DeLisser HM, Abelda SM. A heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 (CD31). J Exp Med 1992; 175: 1401–1404
  • Nelissen I, Gveric D, van Noort JM, Cuzner ML, Opdenakker G. PECAM-1 and gelatinase B coexist in vascular cuffs of multiple sclerosis lesions. Neuropathol Appl Neurobiol 2006; 32: 15–22
  • Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B, Madri JA. Altered vascular permeability and early onset of experimental allergic encephalomyelitis in PECAM-1 deficient mice. J Clin Invest 2002; 109: 383–392
  • Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Dopp E, van der Meide PH, Dijkstra CD, De Vries HE. Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol 2002; 127: 69–79
  • Abbott NJ, Revest PA, Romero IA. Astrocyte–endothelial interaction: Physiology and pathology. Neuropathol Appl Neurobiol 1992; 18: 424–433
  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T. Induction of blood–brain barrier properties in immortalized bovine brain endotelial cells by astrocytic factors. Neurosci Res 1999; 35: 155–164
  • Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood–brain barrier properties in non-neural endotelial cells by close apposition to co-cultured astrocytes. Glia 1997; 19: 13–26
  • Nico B, Cantino D, Sassoe Pognetto M, Bertossi M, Ribatti D, Roncali L. Orthogonal arrays of particles (OAPs) in perivascular astrocytes and tight junctions in endothelial cells. A comparative study in developing and adult brain microvessels. J Submicrosci Cytol Pathol 1994; 26: 103–109
  • Wolburg H, Neuhaus J, Pettmann B, Labourdette G, Sensenbrenner M. Decrease in the density of orthogonal arrays particles in membranes of cultured rat astroglial cells by the brain fibroblast growth factor. Neurosci Lett 1986; 72: 25–30
  • Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 1987; 325: 253–257
  • Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendensen CN, Mucke L, Jhonson MH, Sofroniew MV. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes, in adult transgenic mice. Neuron 1999; 23: 297–308
  • Bauer HC, Bauer H. Neural induction of the blood–brain barrier: Still and enigma. Cell Mol Neurobiol 2000; 20: 13–28
  • Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 2002; 200: 629–638
  • Hickey WF. Migration of hematogeneous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol 1991; 1: 97–105
  • Wekerle H, Linington C, Lassmann H, Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci 1986; 9: 271–277
  • Vajkoczy P, Laschinger M, Engelhardt B. Alpha-4 integrin-VCAM-1 binding mediates G-protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 2001; 108: 557–565
  • Xu H, Manivannan A, Liversidge J, Sharp PF, Forrester JV, Crane IJ. Requirements for passage of T lymphocytes across non-inflamed retinal microvessels. J Neuroimmunol 2003; 142: 47–57
  • Carrithers MD, Visintin I, Kang SJ, Janeway CA, Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000; 123: 1092–1101
  • http://cytokine.medic.kumamoto-u-ac.jp/CFC/CK/Chemokine.html
  • van Horssen J, Bö L, Vos CMP, Virtanen I, de Vries HE. Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: Potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 2005; 64: 722–729
  • Hvas J, McLean C, Justesen J, Kannourakis G, Steinman L, Oksenberg JR, Bernard CC. Perivascular T cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand J Immunol 1997; 46: 195–203
  • McManus C, Berman JW, Brett FM, Staunton H, Farrel M, Brosnan CF. MCP-1, MCP-2, and MCP-3 expression in multiple sclerosis lesions: An immunohistochemical and in situ hybridization study. J Neuroimmunol 1998; 86: 20–29
  • Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. Expresion of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103: 807–815
  • Sorensen TL, Ransohoff RM, Jensen J, Sellebjerg F. Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis. Acta Neurol Scand 2003; 107: 221–227
  • Sorensen TL, Sellebjerg F, Jensen CV, Strieter RM, Ransohoff RM. Chemokines CXCL10 and CCL2: Differential involvement in intrathecal inflammation in multiple sclerosis. Eur J Neurol 2001; 8: 665–672
  • Sindern E, Niederkinkhaus Y, Henschel M, Ossege LM, Patzold T, Malin JP. Differential release of beta-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurol Scand 2001; 104: 88–91
  • Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoatractant protein-1. Nature 2000; 404: 407–411
  • Alt C, Laschinger M, Engelhardt B. Functional expression of lymphoid chemokines CCL19 (ELC) and CCL21 (SLC) at the blood–brain barrier suggests their possible involvement in lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 2002; 32: 2133–2144
  • Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H, Ransohoff RM. Expression of CCR7 in multiple sclerosis: Implications for CNS immunity. Ann Neurol 2004; 55: 627–638
  • Barcellos LF, Schito AM, Rimmler JB, Vittinghoff E, Shih A, Lincoln R, Callier S, Elkins MK, Goodkin DE, Haines JL, Pericak-Vance MA, Hauser SL, Oksenberg JR. CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Immunogenetics 2000; 51: 281–288
  • Sellebjerg F, Madsen HO, Jensen J, Garret P. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 2000; 102: 98–106
  • Kansas GS. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88: 3259–3287
  • Englehardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: Anatomical sites and molecular mechanisms. Trends Immunol 2005; 26: 485–495
  • Brennan FR, O'Neil JK, Allen SJ, Butter C, Nuki G, Baker D. CD44 is involved in selective leukocyte extravasation during inflammatory central nervous system disease. Immunology 1999; 98: 427–435
  • Archelos JJ, Previrtali SC, Hartung HP. The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 1999; 22: 30–38
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994; 76: 301–314
  • Butcher E. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 1991; 67: 1033–1036
  • Canella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995; 37: 424–435
  • Chan PY, Aruffo A. VLA-4 integrin mediates lymphocyte migration on the inducible endothelial cell ligand VCAM-1 and the extracellular matrix ligand fibronectin. J Biol Chem 1993; 268: 24655–24664
  • Bö L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM, Trapp BD. Distribution of immunoglobulin superfamily members ICAM-1,-2-,-3, and the β2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 1996; 55: 1060–1072
  • Peterson JW, Bo L, Mork S, Cahng A, Ransohoff RM, Trapp BD. VCAM-1 positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 2002; 61: 539–546
  • Hughes PE, Pfaff M. Integrin affinity modulation. Trends Cell Biol 1998; 8: 359–364
  • Kinashi T. Intracellular signaling controlling integrin activation in lymphocytes. Nat Rev Immunol 2005; 5: 546–559
  • Hartung HP, Kieseier BC. The role of metalloproteinases in auto-immune damage to the central and peripheral nervous system. J Neuroimmunol 2000; 107: 140–147
  • Cuzner ML, Opdenakker G. Plasminogen activators and matrix metalloproteinases mediators of extracellular proteolysis in inflammatory demyelinataion of the central nervous system. J Neuroimmunol 1999; 94: 1–14
  • Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, Andersson PB, Satbler G, Miller K. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology 1999; 53: 1397–1401
  • Newman TA, Wooley St, Hughes PM, Sibson NR, Anthony DC, Perry VH. T-cell and macrophage-mediated axon damage in the absence of a CNS-specific immune response: Involvement of metalloproteinases. Brain 2001; 124: 2203–2214
  • Xie B, Dong Z, Fidler IJ. Regulatory mechanisms for the expression of type IV collagenases/gelatinases in murine macrophages. J Immunol 1994; 152: 3637–3644
  • Zhou H, Bernhard EJ, Fox PC, Billings PC. Induction of metalloproteinase activity in human T-lymphocytes. Biochem Biophys Acta 1993; 1177: 174–178
  • Shang XZ, Lang BJ, Issekutz AC. Adhesión molecule mechanisms mediating monocyte migration through synovial fibroblast and endotelium barriers: Role for CD11/CD18, very late antigen-4 (CD49d/CD29), very late antigen-5 (CD49e/CD29), and vascular adhesión molecule-1 (CD106). J Immunol 1998; 160: 467–474
  • de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, van der Pol SM, Hooijberg E, Dijkstra CD, van der Berg TK. Signal-regulatory protein alpha-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J Immunol 2002; 168: 5832–5839
  • Martin-Padura I, Lotaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intracellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117–127
  • Trebst C, Sorensen TL, Kivisäkk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM. CCR1/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 2001; 159: 1701–1710
  • Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 2000; 192: 1075–1080
  • Lee TH, Avraham H, Lee SH, Avraham S. Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 2002; 277: 10445–10451
  • Tani M, Fuentes ME, Peterson JW, Trapp BD, Durham SK, Loy JK, Bravo R, Ransohoff RM, Lira SA. Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N5/KC in oligodendrocytes. J Clin Invest 1996; 98: 529–539
  • Calabresi PA, Pelfrey CM, Tranquil LR, Maloni H, McFarland HF. VLA-4 expression on peripheral blood lymphocytes is down-regulated after treatment of multiple sclerosis with interferon beta. Neurology 1997; 49: 1111–1116
  • Calabresi PA, Tranquil LA, Dambrosia JM, Stone LA, Maloni H, Bash CN, Frank JA, McFarland HF. Increases in soluble VCAM-1 correlate with a decrease in multiple sclerosis treated with interferon β-1b. Ann Neurol 1997; 4: 669–674
  • Elovaara I, Lällä M, Spåre E, Lehtimäki T, Dastidar P. Methylprednisolone reduces adhesion molecules in blood and cerebrospinal fluid in patients with MS. Neurology 1998; 51: 1703–1708
  • Kent SJ, Karlik SJ, Rice GPA, Horner HC. A monoclonal antibody to α-4 integrin reverses the MR-detectable signs of experimental allergic encephalomyelitis in the guinea pig. JMRI 1995; 5: 535–540
  • Rice GAP, Hartung HP, Calabresi PA. Anti-α4 integrin therapy for multiple sclerosis. Mechanisms and rationale. Neurology 2005; 64: 1336–1342
  • Yednock T, Cannon C, Fritz L, Sanchez-Madrid R, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 1992; 356: 63–66
  • Niino M, Bodner C, Simard ML, Alatab S, Gano D, Kim HJ, Trigueiro M, Racicot D, Guerrete C, Antel JP, Fournier A, Grand'Maison F, Bar-Or A. Natalizumab effects on immune cell response in multiple sclerosis. Ann Neurol 2006; 59: 748–754
  • Miller DH, Khan OA, Sheremata WA, Blumhardt LD, rice GP, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O'Connor PW. International natalizumab multiple sclerosis group. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348: 15–23
  • O'Connor PW, Goodman A, Wilmer-Hulme AJ, Libonati MA, Metz L, Murray RS, Sheremata WA, Vollmer TL, Stone LA. Natalizumab multiple sclerosis trial group. Randomized multicenter trial of natalizumab in acute MS relapses. Clinical and MRI effects. Neurology 2004; 62: 2038–2043
  • Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara M. Sandrock AW for the AFFIRM Investigators. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006, 354: 899–910
  • Rudick RA, Stuart WH, Calabresi PA, Confavreaux C, Galetta SL, Radue EW, Lublin FD, Weinstock-Guttman B, Wynn DR, Lynn F, Panzara M. Sandrock AW for the SENTINEL investigators. Natalizumab plus interferon beta 1-a for relapsing multiple sclerosis. N Engl J Med 2006; 354: 911–923
  • Kleinschmidt-De Masters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta –1a for multiple sclerosis. N Engl J Med 2005; 353: 369–374
  • Langer-Gould A, Atlas SW, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 2005; 353: 375–381
  • Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, Verbeeck J, Geboes K, Robberecht W, Rutgeerts P. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med 2005; 353: 362–368
  • Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, Hou J, Curfman B, Miszkiel K, Mueller-Lenke N, Sanchez E, Barkhof F, Radue EW, Jäger HR, Clifford DB. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 2006; 354: 924–933
  • Youssef S, Stüve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zanvil SS. The HMG-CoA reductasa inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420: 78–84
  • Sena A, Pedros R, Morais MG. Therapeutic potential of lovastatin in multiple sclerosis. J Neurol 2003; 250: 754–755
  • Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Matlovic-Plese S, Preiningerova J, Rizzo M, Singh I. Oral simvastatin treatment in relapsing remitting multiple sclerosis. Lancet 2004; 363: 1607–1608
  • Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier BC, Niederwieser G, Hartung HP, Archelos JJ. Statins as immunomodulators. Comparison with interferon-β1b in MS. Neurology 2002; 59: 990–997
  • Ifergan I, Wosik K, Cayrol R, Kebir H, Auger C, Bernard M, Bouthillier A, Moumdjian R, Duquette P, Prat A. Statins reduce human blood–brain barrier permeability and restrict leukocyte migration: Relevance to multiple sclerosis. Ann Neurol 2006; 60: 45–55
  • Weitz-Schmidt G. Lymphocyte function-associated antigen-1 blockade by statins: Molecular basis and biological relevance. Endothelium 2003; 10: 43–47
  • Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cotten S, Takada Y, Hommel U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7: 687–692
  • Kuruganti PA, Hinojoza JR, Eaton MJ, Ehmann UK, Sobel RA. Interferon-beta counteracts inflammatory mediator-induced effects on brain endothelial cells tight junctions molecules-implications for multiple sclerosis. J Neuropathol Exp Neurol 2002; 61: 710–724
  • Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, Sasaki M, warren AC, Jawahar A, Cappell B, Alexander JS. Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced desintegration of endothelial junction integrity and barrier. Endothelium 2003; 10: 299–307
  • Sorensen TL, Sellebjerg F. Selective suppression of chemokine receptor CXCR3 expression by interferon-beta 1a in multiple sclerosis. Mult Scler 2002; 8: 104–107
  • Xie JH, Nomura N, Lu M, Chen SL, Koch GE, Weng Y, Rosa R, Di Salvo J, Mudgett J, Peterson LB, Wicker LS, Dimartino JA. Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol 2003; 73: 771–780
  • Lazzeri E, Romagnani P. CXCR3-binding chemokines: Novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord 2005; 5: 109–118
  • Iarlori C, Reale A, Lugaresi GD. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-beta 1b. J Neuroimmunol 2000; 107: 100–107
  • Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE. Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol 2004; 172: 4018–4025
  • Ozenci V, Kouwenhoven M, Teleshova N, Pashenkov M, Fredrikson S, Link H. Multiple sclerosis: Pro and anti-inflammatory cytokines and metalloproteinases are affected differentially by treatment with IFN-beta. J Neuroimmunol 2000; 108: 236–243
  • Waubant E, Gee L, Miller K, Satbler G, Goodkin D. IFN-beta 1a may increase serum levels of TIMP-1 in patients with relapsing-remitting multiple sclerosis. J Interferon Cytokine Res 2001; 21: 181–185
  • Rosenberg GA, Dencoff JE, Correa N, Reiners M, Ford CC. Effects of steroids on CSF matrix metalloproteinases in multiple sclerosis: Relation to blood–brain barrier injury. Neurology 1996; 46: 1626–1632
  • Gijbels K, galardy RE, Steinman L. Reversal of experimental allergic encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteinases. J Clin Invest 1994; 94: 2177–2182
  • Brundula V, Rewscale NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration. Minocycline as a potential therapy for multiple sclerosis. Brain 2002; 125: 1297–1308
  • Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002; 51: 215–223
  • Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 2004; 55: 756
  • Begley DJ. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Therap 2004; 104: 29–45
  • Zhang Y, Pardridge WM. Conjugation of brain derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of neurotrophin. Brain Res 2001; 889: 49–56
  • Cornford EM, Cornford ME. New systems for delivery of drugs to the brain in neurological diseases. Lancet Neurol 2002; 1: 306–315
  • Sindern E, Niederkinkhaus Y, Henschel M, Ossege LM, Patzold T, Malin JP. Differential release of beta-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurol Scand 2001; 104: 88–91
  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.