174
Views
25
CrossRef citations to date
0
Altmetric
Original

Adenosine and anergy

&
Pages 425-432 | Received 01 Mar 2007, Accepted 04 Jun 2007, Published online: 07 Jul 2009

References

  • Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J. International union of pharmacology XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4)527–552
  • Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414(6866)916–920
  • Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+T cells. J Immunol 2005; 174(2)1073–1080
  • Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 2005; 105(12)4707–4714
  • Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M. Cutting edge: Physiologic attenuation of proinflammatory transcription by the G(s) protein-coupled A2A adenosine receptor in vivo. J Immunol 2004; 173(1)21–24
  • Powell JD. The induction and maintenance of T cell anergy. Clin Immunol 2006; 120(3)239–246
  • Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987; 165(2)302–319
  • Lerner CG, Horton MR, Schwartz RH, Powell JD. Distinct requirements for C–C chemokine and IL-2 production by naive, previously activated, and anergic T cells. J Immunol 2000; 164(8)3996–4002
  • Chen L, Rao A, Harrison SC. Signal integration by transcription-factor assemblies: Interactions of NF-AT1 and AP-1 on the IL-2 promoter. Cold Spring Harb Symp Quant Biol 1999; 64: 527–531
  • Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 2002; 109(6)719–731
  • Jenkins MK, Chen CA, Jung G, Mueller DL, Schwartz RH. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 1990; 144(1)16–22
  • Kowalski J, Drake C, Schwartz RH, Powell J. Non-parametric, hypothesis-based analysis of microarrays for comparison of several phenotypes. Bioinformatics 2004; 20(3)364–373
  • Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol 2005; 6(5)472–480
  • Anderson PO, Manzo BA, Sundstedt A, Minaee S, Symonds A, Khalid S, Rodriguez-Cabezas ME, Nicolson K, Li S, Wraith DC, et al. Persistent antigenic stimulation alters the transcription program in T cells, resulting in antigen-specific tolerance. Eur J Immunol 2006; 36(6)1374–1385
  • Harris JE, Bishop KD, Phillips NE, Mordes JP, Greiner DL, Rossini AA, Czech MP. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+T cells. J Immunol 2004; 173(12)7331–7338
  • Heissmeyer V, Macian F, Im SH, Varma R, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signalling proteins. Nat Immunol 2004; 5(3)255–265
  • Anandasabapathy N, Ford GS, Bloom D, Holness C, Paragas V, Seroogy C, Skrenta H, Hollenhorst M, Fathman CG, Soares L. GRAIL: An E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+T cells. Immunity 2003; 18(4)535–547
  • Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C, Yang C, Arya S, Bachmaier K, Su L. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 2004; 21(2)167–177
  • Seroogy CM, Soares L, Ranheim EA, Su L, Holness C, Bloom D, Fathman CG. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol 2004; 173(1)79–85
  • Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 2004; 5(9)883–890
  • Li W, Whaley CD, Mondino A, Mueller DL. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+T cells. Science 1996; 271(5253)1272–1276
  • Fields PE, Gajewski TF, Fitch FW. Blocked Ras activation in anergic CD4+T cells. Science 1996; 271(5253)1276–1278
  • Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM. Maintenance of human T cell anergy: Blocking of IL-2 gene transcription by activated Rap1. Science 1997; 278(5335)124–128
  • Li L, Greenwald RJ, Lafuente EM, Tzachanis D, Berezovskaya A, Freeman GJ, Sharpe AH, Boussiotis VA. Rap1-GTP is a negative regulator of Th cell function and promotes the generation of CD4+CD103+ regulatory T cells in vivo. J Immunol 2005; 175(5)3133–3139
  • Zha Y, Marks R, Ho AW, Peterson AC, Janardhan S, Brown I, Praveen K, Stang S, Stone JC, Gajewski TF. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol 2006; 7(11)1166–1173
  • Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 2006; 7(11)1174–1181
  • Powell JD, Lerner CG, Ewoldt GR, Schwartz RH. The − 180 site of the IL-2 promoter is the target of CREB/CREM binding in T cell anergy. J Immunol 1999; 163(12)6631–6639
  • Telander DG, Malvey EN, Mueller DL. Evidence for repression of IL-2 gene activation in anergic T cells. J Immunol 1999; 162(3)1460–1465
  • Tenbrock K, Juang YT, Tolnay M, Tsokos GC. The cyclic adenosine 5′-monophosphate response element modulator suppresses IL-2 production in stimulated T cells by a chromatin-dependent mechanism. J Immunol 2003; 170(6)2971–2976
  • Solomou EE, Juang YT, Tsokos GC. Protein kinase C-theta participates in the activation of cyclic AMP-responsive element-binding protein and its subsequent binding to the − 180 site of the IL-2 promoter in normal human T lymphocytes. J Immunol 2001; 166(9)5665–5674
  • Bandyopadhyay S, Dure M, Paroder M, Soto-Nieves N, Puga I, Macian F. Interleukin 2 gene transcription is regulated by Ikaros-induced changes in histone acetylation in anergic T cells. Blood 2006
  • Thomas RM, Gao L, Wells AD. Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 2005; 174(8)4639–4646
  • Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6(4)411–417
  • Adler AJ, Huang CT, Yochum GS, Marsh DW, Pardoll DM. In vivo CD4+T cell tolerance induction versus priming is independent of the rate and number of cell divisions. J Immunol 2000; 164(2)649–655
  • Rocha B, Tanchot C, Von Boehmer H. Clonal anergy blocks in vivo growth of mature T cells and can be reversed in the absence of antigen. J Exp Med 1993; 177(5)1517–1521
  • Rocha B, Grandien A, Freitas AA. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J Exp Med 1995; 181(3)993–1003
  • Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 1998; 95(3)1178–1183
  • Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH. CTLA-4 regulates induction of anergy in vivo. Immunity 2001; 14(2)145–155
  • Pape KA, Kearney ER, Khoruts A, Mondino A, Merica R, Chen ZM, Ingulli E, White J, Johnson JG, Jenkins MK. Use of adoptive transfer of T cell-antigen-receptor-transgenic T cell for the study of T cell activation in vivo. Immunol Rev 1997; 156: 67–78
  • Huang CT, Huso DL, Lu Z, Wang T, Zhou G, Kennedy EP, Drake CG, Morgan DJ, Sherman LA, Higgins AD, et al. CD4+T cells pass through an effector phase during the process of in vivo tolerance induction. J Immunol 2003; 170(8)3945–3953
  • Andris F, Denanglaire S, de Mattia F, Urbain J, Leo O. Naive T cells are resistant to anergy induction by anti-CD3 antibodies. J Immunol 2004; 173(5)3201–3208
  • Hayashi RJ, Loh DY, Kanagawa O, Wang F. Differences between responses of naive and activated T cells to anergy induction [in process citation]. J Immunol 1998; 160(1)33–38
  • Schwartz RH. T cell anergy. Annu Rev Immunol 2003; 21: 305–334
  • Medzhitov R, Janeway CA, Jr. How does the immune system distinguish self from nonself?. Semin Immunol 2000; 12(3)185–188, discussion 257–344
  • Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system?. Semin Immunol 1996; 8(5)271–280
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425(6957)516–521
  • Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192(4)565–570
  • Powell JD, Horton MR. Threat matrix: Low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 2005; 31(3)207–218
  • Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, Powell JD. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 2007; 178(4)2163–2170
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18(16)1926–1945
  • Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999; 162(5)2775–2784
  • Vanasek TL, Khoruts A, Zell T, Mueller DL. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: Enhanced cell cycle progression promotes recall antigen responsiveness. J Immunol 2001; 167(10)5636–5644
  • Allen A, Zheng Y, Gardner L, Safford M, Horton MR, Powell JD. The novel cyclophilin binding compound, sanglifehrin A, disassociates G1 cell cycle arrest from tolerance induction. J Immunol 2004; 172(8)4797–4803
  • Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 2000; 362(4–5)299–309
  • Williams TC, Jarvis SM. Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles. Biochem J 1991; 274(Pt 1)27–33
  • Berne RM, Rubio R. Adenine nucleotide metabolism in the heart. Circ Res 1974; 35(Suppl 3)109–120
  • Latini S, Bordoni F, Pedata F, Corradetti R. Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 1999; 127(3)729–739
  • Latini S, Bordoni F, Corradetti R, Pepeu G, Pedata F. Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 1999; 128(5)1035–1044
  • Lloyd HG, Fredholm BB. Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 1995; 26(4)387–395
  • Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57(13)2602–2605
  • Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R. Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 1983; 158(4)1160–1177
  • Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76(1)5–13
  • Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R. Adenosine: An endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 1986; 78(3)760–770
  • Newby AC, Holmquist CA, Illingworth J, Pearson JD. The control of adenosine concentration in polymorphonuclear leucocytes, cultured heart cells and isolated perfused heart from the rat. Biochem J 1983; 214(2)317–323
  • Leonard EJ, Shenai A, Skeel A. Dynamics of chemotactic peptide-induced superoxide generation by human monocytes. Inflammation 1987; 11(2)229–240
  • Salmon JE, Brogle N, Brownlie C, Edberg JC, Kimberly RP, Chen BX, Erlanger BF. Human mononuclear phagocytes express adenosine A1 receptors. A novel mechanism for differential regulation of Fc gamma receptor function. J Immunol 1993; 151(5)2775–2785
  • Lappin D, Whaley K. Adenosine A2 receptors on human monocytes modulate C2 production. Clin Exp Immunol 1984; 57(2)454–460
  • Parmely MJ, Zhou WW, Edwards CK, 3rd, Borcherding DR, Silverstein R, Morrison DC. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J Immunol 1993; 151(1)389–396
  • Jordan JE, Zhao ZQ, Sato H, Taft S, Vinten-Johansen J. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther 1997; 280(1)301–309
  • Ross SD, Tribble CG, Linden J, Gangemi JJ, Lanpher BC, Wang AY, Kron IL. Selective adenosine-A2A activation reduces lung reperfusion injury following transplantation. J Heart Lung Transplant 1999; 18(10)994–1002
  • Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, Cronstein BN. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 2003; 48(1)240–247
  • Okusa MD. A(2A) adenosine receptor: A novel therapeutic target in renal disease. Am J Physiol Renal Physiol 2002; 282(1)F10–F18
  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005; 129(1)26–33
  • Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 2006; 203(12)2639–2648
  • Filippini A, Taffs RE, Sitkovsky MV. Extracellular ATP in T-lymphocyte activation: Possible role in effector functions. Proc Natl Acad Sci USA 1990; 87(21)8267–8271
  • Apasov SG, Koshiba M, Chused TM, Sitkovsky MV. Effects of extracellular ATP and adenosine on different thymocyte subsets: Possible role of ATP-gated channels and G protein-coupled purinergic receptor. J Immunol 1997; 158(11)5095–5105
  • Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T cell activation and expansion. Blood 1997; 90(4)1600–1610
  • Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors*. Annu Rev Immunol 2004; 22: 657–682
  • Heath WR, Carbone FR. Immunology: Dangerous liaisons. Nature 2003; 425(6957)460–461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.