160
Views
30
CrossRef citations to date
0
Altmetric
Original

General aspects of the genetics of SLE

&
Pages 550-559 | Published online: 07 Jul 2009

References

  • Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–318
  • Hochberg MC. The application of genetic epidemiology to systemic lupus erythematosus. J Rheumatol 1987; 14: 867–869
  • Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum 1995; 38: 551–558
  • McCarty DJ, Manzi S, Medsger TA, Jr., Ramsey-Goldman R, LaPorte RE, Kwoh CK. Incidence of systemic lupus erythematosus. Race and gender differences. Arthritis Rheum 1995; 38: 1260–1270
  • Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048
  • Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 2006; 7: 385–394
  • Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature 2004; 429: 446–452
  • Craig DW, Stephan DA. Applications of whole-genome high-density SNP genotyping. Expert Rev Mol Diagn 2005; 5: 159–170
  • Theofilopoulos AN, Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol 1985; 37: 269–390
  • Rigby RJ, Fernando MM, Vyse TJ. Mice, humans and haplotypes—the hunt for disease genes in SLE. Rheumatology (Oxford) 2006; 45: 1062–1067
  • Cantor RM, Yuan J, Napier S, et al. Systemic lupus erythematosus genome scan: Support for linkage at 1q23, 2q33, 16q12–13, and 17q21–23 and novel evidence at 3p24, 10q23–24, 13q32, and 18q22–23. Arthritis Rheum 2004; 50: 3203–3210
  • Gaffney PM, Kearns GM, Shark KB, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95: 14875–14879
  • Gaffney PM, Ortmann WA, Selby SA, et al. Genome screening in human systemic lupus erythematosus: Results from a second Minnesota cohort and combined analyses of 187 sib-pair families. Am J Hum Genet 2000; 66: 547–556
  • Gray-McGuire C, Moser KL, Gaffney PM, et al. Genome scan of human systemic lupus erythematosus by regression modeling: Evidence of linkage and epistasis at 4p16–15.2. Am J Hum Genet 2000; 67: 1460–1469
  • Johansson CM, Zunec R, Garcia MA, et al. Chromosome 17p12–q11 harbors susceptibility loci for systemic lupus erythematosus. Hum Genet 2004; 115: 230–238
  • Koskenmies S, Lahermo P, Julkunen H, Ollikainen V, Kere J, Widen E. Linkage mapping of systemic lupus erythematosus (SLE) in finnish families multiply affected by SLE. J Med Genet 2004; 41: e2–e5
  • Lindqvist AK, Steinsson K, Johanneson B, et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000; 14: 169–178
  • Moser KL, Neas BR, Salmon JE, et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African–American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874
  • Nath SK, Quintero-Del-Rio AI, Kilpatrick J, Feo L, Ballesteros M, Harley JB. Linkage at 12q24 with systemic lupus erythematosus (SLE) is established and confirmed in Hispanic and European American families. Am J Hum Genet 2004; 74: 73–82
  • Olson JM, Song Y, Dudek DM, et al. A genome screen of systemic lupus erythematosus using affected-relative-pair linkage analysis with covariates demonstrates genetic heterogeneity. Genes Immun 2002; 3(Suppl 1)S5–S12
  • Ramos PS, Kelly JA, Gray-McGuire C, et al. Familial aggregation and linkage analysis of autoantibody traits in pedigrees multiplex for systemic lupus erythematosus. Genes Immun 2006; 7: 417–432
  • Rao S, Olson JM, Moser KL, et al. Linkage analysis of human systemic lupus erythematosus-related traits: A principal component approach. Arthritis Rheum 2001; 44: 2807–2818
  • Shai R, Quismorio FP, Jr., Li L, et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999; 8: 639–644
  • Xing C, Sestak AL, Kelly JA, et al. Localization and replication of the systemic lupus erythematosus linkage signal at 4p16: Interaction with 2p11, 12q24 and 19q13 in European Americans. Hum Genet 2007; 120: 623–631
  • Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247
  • Forabosco P, Gorman JD, Cleveland C, et al. Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus. Genes Immun 2006; 7: 609–614
  • Lee YH, Nath SK. Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis. Hum Genet 2005; 118: 434–443
  • Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277
  • Kelly JA, Thompson K, Kilpatrick J, et al. Evidence for a susceptibility gene (SLEH1) on chromosome 11q14 for systemic lupus erythematosus (SLE) families with hemolytic anemia. Proc Natl Acad Sci USA 2002; 99: 11766–11771
  • Nadeau JH. Modifier genes in mice and humans. Nat Rev Genet 2001; 2: 165–174
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517
  • Becker KG. The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 2004; 62: 309–317
  • Salmon JE, Pricop L. Human receptors for immunoglobulin G: Key elements in the pathogenesis of rheumatic disease. Arthritis Rheum 2001; 44: 739–750
  • van der PW, van de Winkel JG. IgG receptor polymorphisms: Risk factors for disease. Immunogenetics 1998; 48: 222–232
  • Salmon JE, Millard S, Schachter LA, et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996; 97: 1348–1354
  • Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: A meta-analysis. Arthritis Rheum 2002; 46: 1563–1571
  • Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of Fc gammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997; 100: 1059–1070
  • Karassa FB, Trikalinos TA, Ioannidis JP. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: A meta-analysis. Kidney Int 2003; 63: 1475–1482
  • Magnusson V, Johanneson B, Lima G, Odeberg J, arcon-Segovia D, arcon-Riquelme ME. Both risk alleles for FcgammaRIIA and FcgammaRIIIA are susceptibility factors for SLE: A unifying hypothesis. Genes Immun 2004; 5: 130–137
  • Kyogoku C, Dijstelbloem HM, Tsuchiya N, et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46: 1242–1254
  • Su K, Wu J, Edberg JC, et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 2004; 172: 7186–7191
  • Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454
  • Aitman TJ, Dong R, Vyse TJ, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855
  • Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic but not organ-specific autoimmunity Nat Genet 2007,39:721–723.
  • Schifferli JA, Steiger G, Paccaud JP, Sjoholm AG, Hauptmann G. Difference in the biological properties of the two forms of the fourth component of human complement (C4). Clin Exp Immunol 1986; 63: 473–477
  • Pickering MC, Walport MJ. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford) 2000; 39: 133–141
  • Christiansen FT, Dawkins RL, Uko G, McCluskey J, Kay PH, Zilko PJ. Complement allotyping in SLE: Association with C4A null. Aust NZJ Med 1983; 13: 483–488
  • Fielder AH, Walport MJ, Batchelor JR, et al. Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: Importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J (Clin Res Ed) 1983; 286: 425–428
  • Olsen ML, Goldstein R, Arnett FC, Duvic M, Pollack M, Reveille JD. C4A gene deletion and HLA associations in black Americans with systemic lupus erythematosus. Immunogenetics 1989; 30: 27–33
  • Yamada H, Watanabe A, Mimori A, et al. Lack of gene deletion for complement C4A deficiency in Japanese patients with systemic lupus erythematosus. J Rheumatol 1990; 17: 1054–1057
  • Naves M, Hajeer AH, Teh LS, et al. Complement C4B null allele status confers risk for systemic lupus erythematosus in a Spanish population. Eur J Immunogenet 1998; 25: 317–320
  • Yang Y, Chung EK, Zhou B, et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun 2004; 7: 98–132
  • Johnson CA, Densen P, Hurford RK, Jr., Colten HR, Wetsel RA. Type I human complement C2 deficiency. A 28-base pair gene deletion causes skipping of exon 6 during RNA splicing. J Biol Chem 1992; 267: 9347–9353
  • Hartung K, Fontana A, Klar M, et al. Association of class I, II, and III MHC gene products with systemic lupus erythematosus. Results of a Central European multicenter study. Rheumatol Int 1989; 9: 13–18
  • Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 2004; 16: 513–521
  • Doherty DG, Ireland R, Demaine AG, et al. Major histocompatibility complex genes and susceptibility to systemic lupus erythematosus in southern Chinese. Arthritis Rheum 1992; 35: 641–646
  • Howard PF, Hochberg MC, Bias WB, Arnett FC, Jr., McLean RH. Relationship between C4 null genes, HLA-D region antigens, and genetic susceptibility to systemic lupus erythematosus in Caucasian and black Americans. Am J Med 1986; 81: 187–193
  • Schur PH, Marcus-Bagley D, Awdeh Z, Yunis EJ, Alper CA. The effect of ethnicity on major histocompatibility complex complement allotypes and extended haplotypes in patients with systemic lupus erythematosus. Arthritis Rheum 1990; 33: 985–992
  • Graham RR, Ortmann WA, Langefeld CD, et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet 2002; 71: 543–553
  • de Bakker PI, McVean G, Sabeti PC, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–1172
  • Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology 1998; 199: 265–285
  • Turner MW, Hamvas RM. Mannose-binding lectin: Structure, function, genetics and disease associations. Rev Immunogenet 2000; 2: 305–322
  • Garred P, Voss A, Madsen HO, Junker P. Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun 2001; 2: 442–450
  • Huang YF, Wang W, Han JY, et al. Increased frequency of the mannose-binding lectin LX haplotype in Chinese systemic lupus erythematosus patients. Eur J Immunogenet 2003; 30: 121–124
  • Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 1999; 190: 585–590
  • Du Clos TW, Zlock LT, Rubin RL. Analysis of the binding of C-reactive protein to histones and chromatin. J Immunol 1988; 141: 4266–4270
  • Du Clos TW. C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J Immunol 1989; 143: 2553–2559
  • Gershov D, Kim S, Brot N, Elkon KB. C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J Exp Med 2000; 192: 1353–1364
  • Russell AI, Cunninghame Graham DS, Shepherd C, et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 2004; 13: 137–147
  • Ronnblom L, Alm GV. Systemic lupus erythematosus and the type I interferon system. Arthritis Res Ther 2003; 5: 68–75
  • Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615
  • Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197: 711–723
  • Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 2005; 23: 307–336
  • Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528–537
  • Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550–555
  • Cunninghame Graham DS, Manku H, Wagner S, et al. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum Mol Genet, 2007; 16: 579–591
  • Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of interferon regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 2007; 104: 6758–6763
  • Cloutier JF, Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T-cells and other hemopoietic cells. EMBO J 1996; 15: 4909–4918
  • Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 1999; 189: 111–121
  • Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337
  • Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338
  • Vang T, Congia M, Macis MD, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005; 37: 1317–1319
  • Lee YH, Rho YH, Choi SJ, et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 2007; 46: 49–56
  • Wu H, Cantor RM, Graham DS, et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: Increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum 2005; 52: 2396–2402
  • Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8: 765–772
  • Nishimura H, Honjo T. PD-1: An inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol 2001; 22: 265–268
  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–151
  • Prokunina L, Castillejo-Lopez C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669
  • Prokunina L, Gunnarsson I, Sturfelt G, et al. The systemic lupus erythematosus-associated PDCD1 polymorphism PD1.3A in lupus nephritis. Arthritis Rheum 2004; 50: 327–328
  • Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: Evidence of population-specific effects. Arthritis Rheum 2004; 50: 2590–2597
  • Lin SC, Yen JH, Tsai JJ, et al. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum 2004; 50: 770–775
  • Rudd CE, Schneider H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 2003; 3: 544–556
  • Quintero-Del-Rio AI, Kelly JA, Garriott CP, et al. SLEN2 (2q34–35) and SLEN1 (10q22.3) replication in systemic lupus erythematosus stratified by nephritis. Am J Hum Genet 2004; 75: 346–348
  • Plenge RM, Padyukov L, Remmers EF, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4000 samples from North America and Sweden: Association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060
  • Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511
  • Barreto M, Santos E, Ferreira R, et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet 2004; 12: 620–626
  • Lee YH, Harley JB, Nath SK. CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): A meta-analysis. Hum Genet 2005; 116: 361–367
  • Graham DS, Wong AK, McHugh NJ, Whittaker JC, Vyse TJ. Evidence for unique association signals in SLE at the CD28-CTLA4-ICOS locus in a family-based study. Hum Mol Genet 2006; 15: 3195–3205
  • Chen Z, Liu Z, Zheng S, Liang Z. Expression of inducible co-stimulator in peripheral blood T lymphocytes in the patients with systemic lupus erythematosus. J Huazhong Univ Sci Technolog Med Sci 2005; 25: 357–359
  • Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202: 1131–1139
  • Krystosek A. Preferential sites of early DNA cleavage in apoptosis and the pathway of nuclear damage. Histochem Cell Biol 1999; 111: 265–276
  • Lau CM, Broughton C, Tabor AS, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/toll-like receptor 7 engagement. J Exp Med 2005; 202: 1171–1177
  • Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A. Activation of autoreactive B cells by CpG dsDNA. Immunity 2003; 19: 837–847
  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006; 25: 417–428
  • De Jager PL, Richardson A, Vyse TJ, Rioux JD. Genetic variation in toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis Rheum 2006; 54: 1279–1282
  • Hur JW, Shin HD, Park BL, Kim LH, Kim SY, Bae SC. Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens 2005; 65: 266–270
  • Ng MW, Lau CS, Chan TM, Wong WH, Lau YL. Polymorphisms of the toll-like receptor 9 (TLR9) gene with systemic lupus erythematosus in Chinese. Rheumatology (Oxford) 2005; 44: 1456–1457
  • Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006; 312: 1669–1672
  • Chan AY, Westcott JM, Mooney JM, Wakeland EK, Schatzle JD. The role of SAP and the SLAM family in autoimmunity. Curr Opin Immunol 2006; 18: 656–664
  • Morel L, Blenman KR, Croker BP, Wakeland EK. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2001; 98: 1787–1792
  • Wandstrat AE, Nguyen C, Limaye N, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780
  • Kumar KR, Li L, Yan M, et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 2006; 312: 1665–1669
  • Wandstrat A, Wakeland E. The genetics of complex autoimmune diseases: Non-MHC susceptibility genes. Nat Immunol 2001; 2: 802–809
  • Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 2004; 89: 5862–5865
  • Viken MK, Amundsen SS, Kvien TK, et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun 2005; 6: 271–273
  • Tsao BP, Cantor RM, Kalunian KC, et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99: 725–731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.