363
Views
52
CrossRef citations to date
0
Altmetric
Original

Fc receptor genes and the systemic lupus erythematosus diathesis

, &
Pages 567-581 | Published online: 07 Jul 2009

References

  • Sestak AL, Shaver TS, Moser KL, Neas BR, Harley JB. Familial aggregation of lupus and autoimmunity in an unusual multiplex pedigree. J Rheumatol 1999; 26(7)1495–1499
  • Arnett FC. Familial SLE, the HLA system and the genetics of lupus erythematosus. Lea & Febiger, Philadelphia 1987
  • Vyse TJ, Todd JA. Genetic analysis of autoimmune disease. Cell 1996; 85(3)311–318
  • Buckman KJ, Moore SK, Ebbin AJ, Cox MB, Dubois EL. Familial systemic lupus erythematosus. Arch Intern Med 1978; 138(11)1674–1676
  • Lawrence JS, Martins CL, Drake GL. A family survey of lupus erythematosus. 1. Heritability. J Rheumatol 1987; 14(5)913–921
  • Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35(3)311–318
  • Block SR, Winfield JB, Lockshin MD, D'Angelo WA, Christian CL. Studies of twins with systemic lupus erythematosus. A review of the literature and presentation of 12 additional sets. Am J Med 1975; 59(4)533–552
  • Reichlin M, Harley JB, Lockshin MD. Serologic studies of monozygotic twins with systemic lupus erythematosus. Arthritis Rheum 1992; 35(4)457–464
  • Cantor RM, Yuan J, Napier S, et al. Systemic lupus erythematosus genome scan: Support for linkage at 1q23, 2q33, 16q12–13, and 17q21–23 and novel evidence at 3p24, 10q23–24, 13q32, and 18q22–23. Arthritis Rheum 2004; 50(10)3203–3210
  • Johanneson B, Lima G, von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME. A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71(5)1060–1071
  • Moser KL, Neas BR, Salmon JE, et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African–American pedigrees. Proc Natl Acad Sci USA 1998; 95(25)14869–14874
  • Olson JM, Song Y, Dudek DM, et al. A genome screen of systemic lupus erythematosus using affected-relative-pair linkage analysis with covariates demonstrates genetic heterogeneity. Genes Immun 2002; 3(Suppl 1)S5–S12
  • Shai R, Quismorio FP, Jr., Li L, et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999; 8(4)639–644
  • Tsao BP, Cantor RM, Kalunian KC, et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99(4)725–731
  • Tsao BP. Lupus susceptibility genes on human chromosome 1. Int Rev Immunol 2000; 19(4–5)319–334
  • Morel L, Blenman KR, Croker BP, Wakeland EK. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2001; 98(4)1787–1792
  • Morel L, Wakeland EK. Lessons from the NZM2410 model and related strains. Int Rev Immunol 2000; 19(4–5)423–446
  • Wakeland EK, Liu K, Graham RR, Behrens TW. Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001; 15(3)397–408
  • Wither JE, Paterson AD, Vukusic B. Genetic dissection of B cell traits in New Zealand black mice. The expanded population of B cells expressing up-regulated costimulatory molecules shows linkage to Nba2. Eur J Immunol 2000; 30(2)356–365
  • Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv Immunol 1994; 57: 1–127
  • Ravetch JV, Kinet JP. Fc receptors. Annu Rev Immunol 1991; 9: 457–492
  • Schreiber AD, Rossman MD, Levinson AI. The immunobiology of human Fc gamma receptors on hematopoietic cells and tissue macrophages. Clin Immunol Immunopathol 1992; 62(1 Pt 2)S66–S72
  • van de Winkel JG, Capel PJ. Human IgG Fc receptor heterogeneity: Molecular aspects and clinical implications. Immunol Today 1993; 14(5)215–221
  • Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann Hematol 1998; 76(6)231–248
  • Salmon JE, Edberg JC, Kimberly RP. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest 1990; 85(4)1287–1295
  • Salmon JE, Edberg JC, Brogle NL, Kimberly RP. Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest 1992; 89(4)1274–1281
  • Rascu A, Repp R, Westerdaal NA, Kalden JR, van de Winkel JG. Clinical relevance of Fc gamma receptor polymorphisms. Ann N Y Acad Sci 1997; 815: 282–295
  • Parren PW, Warmerdam PA, Boeije LC, et al. On the interaction of IgG subclasses with the low affinity Fc gamma RIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest 1992; 90(4)1537–1546
  • Tate BJ, Witort E, McKenzie IF, Hogarth PM. Expression of the high responder/non-responder human Fc gamma RII. Analysis by PCR and transfection into FcR-COS cells. Immunol Cell Biol 1992; 70(Pt 2)79–87
  • Warmerdam PA, van de Winkel JG, Gosselin EJ, Capel PJ. Molecular basis for a polymorphism of human Fc gamma receptor II (CD32). J Exp Med 1990; 172(1)19–25
  • Pricop L, Salmon JE. Redox regulation of Fcgamma receptor-mediated phagocytosis: Implications for host defense and tissue injury. Antioxid Redox Signal 2002; 4(1)85–95
  • Clark MR, Clarkson SB, Ory PA, Stollman N, Goldstein IM. Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J Immunol 1989; 143(5)1731–1734
  • Salmon JE, Brogle NL, Edberg JC, Kimberly RP. Fc gamma receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by Fc gamma receptor II. J Immunol 1991; 146(3)997–1004
  • Clark MR, Stuart SG, Kimberly RP, Ory PA, Goldstein IM. A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur J Immunol 1991; 21(8)1911–1916
  • Salmon JE, Millard S, Schachter LA, et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996; 97(5)1348–1354
  • Warmerdam PA, van de Winkel JG, Vlug A, Westerdaal NA, Capel PJ. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 1991; 147(4)1338–1343
  • Stein MP, Edberg JC, Kimberly RP, et al. C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 2000; 105(3)369–376
  • Chu ZT, Tsuchiya N, Kyogoku C, et al. Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: A common susceptibility gene in the Asian populations. Tissue Antigens 2004; 63(1)21–27
  • Karassa FB, Bijl M, Davies KA, et al. Role of the Fcgamma receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis. Arthritis Rheum 2003; 48(7)1930–1938
  • Gelmetti AP, Freitas AC, Woronik V, Barros RT, Bonfa E, Monteiro RC. Polymorphism of the FcgammaRIIalpha IgG receptor in patients with lupus nephritis and glomerulopathy. J Rheumatol 2006; 33(3)523–530
  • Manger K, Repp R, Jansen M, et al. Fcgamma receptor IIa, IIIa, and IIIb polymorphisms in German patients with systemic lupus erythematosus: Association with clinical symptoms. Ann Rheum Dis 2002; 61(9)786–792
  • Norsworthy P, Theodoridis E, Botto M, et al. Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 1999; 42(9)1828–1832
  • Siriboonrit U, Tsuchiya N, Sirikong M, et al. Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 2003; 61(5)374–383
  • Bazilio AP, Viana VS, Toledo R, Woronik V, Bonfa E, Monteiro RC. Fc gamma RIIa polymorphism: A susceptibility factor for immune complex-mediated lupus nephritis in Brazilian patients. Nephrol Dial Transplant 2004; 19(6)1427–1431
  • Oh M, Petri MA, Kim NA, Sullivan KE. Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus. J Rheumatol 1999; 26(7)1486–1489
  • Botto M, Theodoridis E, Thompson EM, et al. Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): No association with disease. Clin Exp Immunol 1996; 104(2)264–268
  • Duits AJ, Bootsma H, Derksen RH, et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995; 38(12)1832–1836
  • Koene HR, Kleijer M, Swaak AJ, et al. The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 1998; 41(10)1813–1818
  • Dijstelbloem HM, Bijl M, Fijnheer R, et al. Fcgamma receptor polymorphisms in systemic lupus erythematosus: Association with disease and in vivo clearance of immune complexes. Arthritis Rheum 2000; 43(12)2793–2800
  • Gonzalez-Escribano MF, Aguilar F, Sanchez-Roman J, Nunez-Roldan A. FcgammaRIIA, FcgammaRIIIA and FcgammaRIIIB polymorphisms in Spanish patients with systemic lupus erythematosus. Eur J Immunogenet 2002; 29(4)301–306
  • Song YW, Han CW, Kang SW, et al. Abnormal distribution of Fc gamma receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41(3)421–426
  • Salmon JE, Ng S, Yoo DH, Kim TH, Kim SY, Song GG. Altered distribution of Fcgamma receptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum 1999; 42(4)818–819
  • Hatta Y, Tsuchiya N, Ohashi J, et al. Association of Fc gamma receptor IIIB, but not of Fc gamma receptor IIA and IIIA polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun 1999; 1(1)53–60
  • Yap SN, Phipps ME, Manivasagar M, Tan SY, Bosco JJ. Human Fc gamma receptor IIA (FcgammaRIIA) genotyping and association with systemic lupus erythematosus (SLE) in Chinese and Malays in Malaysia. Lupus 1999; 8(4)305–310
  • Kyogoku C, Dijstelbloem HM, Tsuchiya N, et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46(5)1242–1254
  • Lee HS, Chung YH, Kim TG, et al. Independent association of HLA-DR and FCgamma receptor polymorphisms in Korean patients with systemic lupus erythematosus. Rheumatology (Oxford) 2003; 42(12)1501–1507
  • Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997; 100(5)1059–1070
  • Reterink TJ, Verweij CL, van Es LA, Daha MR. Alternative splicing of IgA Fc receptor (CD89) transcripts. Gene 1996; 175(1–2)279–280
  • Edberg JC, Langefeld CD, Wu J, et al. Genetic linkage and association of Fcgamma receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 2002; 46(8)2132–2140
  • Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75(3)504–507
  • Su K, Wu J, Edberg JC, et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 2004; 172(11)7186–7191
  • Hong CH, Lee JS, Lee HS, Bae SC, Yoo DH. The association between fcgammaRIIIB polymorphisms and systemic lupus erythematosus in Korea. Lupus 2005; 14(5)346–350
  • Li X, Wu J, Carter RH, et al. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 2003; 48(11)3242–3252
  • Magnusson V, Zunec R, Odeberg J, et al. Polymorphisms of the Fc gamma receptor type IIB gene are not associated with systemic lupus erythematosus in the Swedish population. Arthritis Rheum 2004; 50(4)1348–1350
  • Chen JY, Wang CM, Ma CC, et al. Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum 2006; 54(12)3908–3917
  • Kyogoku C, Tsuchiya N, Wu H, Tsao BP, Tokunaga K. Association of Fcgamma receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: A family-based association study in Caucasians. Arthritis Rheum 2004; 50(2)671–673
  • Wu J, Ji C, Xie F, et al. FcalphaR1 (CD89) alleles determine the pro-inflammatory potential of serum IgA In press 2007.
  • Blank U, Ra C, Miller L, White K, Metzger H, Kinet JP. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 1989; 337(6203)187–189
  • Smyth LJ, Snowden N, Carthy D, Papsteriades C, Hajeer A, Ollier WE. Fc gamma RIIa polymorphism in systemic lupus erythematosus. Ann Rheum Dis 1997; 56(12)744–746
  • Micheal M, Piette JC, Roullet E, et al. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci USA 2000; 97(1)309–314
  • Callanan MB, Le Baccon P, Mossuz P, et al. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci USA 2000; 97(1)309–314
  • Salmon JE, Kimberly RP, Gibofsky A, Fotino M. Defective mononuclear phagocyte function in systemic lupus erythematosus: Dissociation of Fc receptor-ligand binding and internalization. J Immunol 1984; 133(5)2525–2531
  • Vazquez-Doval J, Sanchez-Ibarrola A. Defective mononuclear phagocyte function in systemic lupus erythematosus: Relationship of FcRII (CD32) with intermediate cytoskeletal filaments. J Investig Allergol Clin Immunol 1993; 3(2)86–91
  • de Haas M, Koene HR, Kleijer M, et al. A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 1996; 156(8)3948–3955
  • Ravetch JV, Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 1989; 170(2)481–497
  • Vance BA, Huizinga TW, Wardwell K, Guyre PM. Binding of monomeric human IgG defines an expression polymorphism of Fc gamma RIII on large granular lymphocyte/natural killer cells. J Immunol 1993; 151(11)6429–6439
  • Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 90(3)1109–1114
  • Seligman VA, Suarez C, Lum R, et al. The Fcgamma receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis Rheum 2001; 44(3)618–625
  • Bredius RG, Fijen CA, De Haas M, et al. Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology 1994; 83(4)624–630
  • Haseley LA, Wisnieski JJ, Denburg MR, et al. Antibodies to C1q in systemic lupus erythematosus: Characteristics and relation to Fc gamma RIIA alleles. Kidney Int 1997; 52(5)1375–1380
  • Bux J. Nomenclature of granulocyte alloantigens. ISBT working party on platelet and granulocyte serology, granulocyte antigen working party. International society of blood transfusion. Transfusion 1999; 39(6)662–663
  • Bux J, Stein EL, Bierling P. Characterization of a new alloantigen (SH) on the human neutrophil Fc gamma receptor IIIb. Blood 1997; 89(3)1027–1034
  • Shows TB, McAlpine PJ, Boucheix C, et al. Guidelines for human gene nomenclature. An international system for human gene nomenclature (ISGN, 1987). Cytogenet Cell Genet 1987; 46(1–4)11–28
  • Kissel K, Hofmann C, Gittinger FS, Daniels G, Bux J. HNA-1a, HNA-1b, and HNA-1c (NA1, NA2, SH) frequencies in African and American Blacks and in Chinese. Tissue Antigens 2000; 56(2)143–148
  • Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. Characterization of polymorphic forms of Fc receptor III on human neutrophils. J Clin Invest 1989; 83(5)1676–1681
  • Edberg JC, Kimberly RP. Modulation of Fc gamma and complement receptor function by the glycosyl-phosphatidylinositol-anchored form of Fc gamma RIII. J Immunol 1994; 152(12)5826–5835
  • Huizinga TW, Kleijer M, Tetteroo PA, Roos D, von dem Borne AE. Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fc gamma receptor III (CD16). Blood 1990; 75(1)213–217
  • van der Pol W, van de Winkel JG. IgG receptor polymorphisms: Risk factors for disease. Immunogenetics 1998; 48(3)222–232
  • Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med 1986; 314(19)1236–1239
  • Clarkson SB, Kimberly RP, Valinsky JE, et al. Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J Exp Med 1986; 164(2)474–489
  • Clark MR, Liu L, Clarkson SB, Ory PA, Goldstein IM. An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus. J Clin Invest 1990; 86(1)341–346
  • Aitman TJ, Dong R, Vyse TJ, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439(7078)851–855
  • Inoue K, Khajavi M, Ohyama T, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004; 36(4)361–369
  • Lupski JR, Stankiewicz P. Genomic disorders: Molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 2005; 1(6)e49
  • Shaw-Smith C, Redon R, Rickman L, et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 2004; 41(4)241–248
  • Daeron M. Fc receptor biology. Annu Rev Immunol 1997; 15: 203–234
  • Amigorena S, Bonnerot C, Drake JR, et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992; 256(5065)1808–1812
  • Phillips NE, Parker DC. Fc-dependent inhibition of mouse B cell activation by whole anti-mu antibodies. J Immunol 1983; 130(2)602–606
  • Ashman RF, Peckham D, Stunz LL. Regulation of B cell apoptosis. Adv Exp Med Biol 1996; 406: 145–154
  • Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–290
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000; 13(2)277–285
  • Jiang Y, Hirose S, Abe M, et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 2000; 51(6)429–435
  • Jiang Y, Hirose S, Sanokawa-Akakura R, et al. Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int Immunol 1999; 11(10)1685–1691
  • Nakamura A, Yuasa T, Ujike A, et al. Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: A novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 2000; 191(5)899–906
  • Yuasa T, Kubo S, Yoshino T, et al. Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J Exp Med 1999; 189(1)187–194
  • Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 1996; 379(6563)346–349
  • Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J Immunol 2004; 172(11)7192–7199
  • Warmerdam PA, Nabben NM, van de Graaf SA, van de Winkel JG, Capel PJ. The human low affinity immunoglobulin G Fc receptor IIC gene is a result of an unequal crossover event. J Biol Chem 1993; 268(10)7346–7349
  • Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV. Organization of the human and mouse low-affinity Fc gamma R genes: Duplication and recombination. Science 1990; 248(4956)732–735
  • Morel PA, Ernst LK, Metes D. Functional CD32 molecules on human NK cells. Leuk Lymphoma 1999; 35(1–2)47–56
  • Metes D, Manciulea M, Pretrusca D, et al. Ligand binding specificities and signal transduction pathways of Fc gamma receptor IIc isoforms: The CD32 isoforms expressed by human NK cells. Eur J Immunol 1999; 29(9)2842–2852
  • Metes D, Ernst LK, Chambers WH, Sulica A, Herberman RB, Morel PA. Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene. Blood 1998; 91(7)2369–2380
  • Su K, Wu J, Edberg JC, McKenzie SE, Kimberly RP. Genomic organization of classical human low-affinity Fcgamma receptor genes. Genes Immun 2002; 3(Suppl 1)S51–S56
  • Cassel DL, Keller MA, Surrey S, et al. Differential expression of Fc gamma RIIA, Fc gamma RIIB and Fc gamma RIIC in hematopoietic cells: Analysis of transcripts. Mol Immunol 1993; 30(5)451–460
  • Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265(5181)2037–2048
  • Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. Gm3;5,13,14 and type 2 diabetes mellitus: An association in American Indians with genetic admixture. Am J Hum Genet 1988; 43(4)520–526
  • Gelernter J, Goldman D, Risch N. The A1 allele at the D2 dopamine receptor gene and alcoholism. A reappraisal. JAMA 1993; 269(13)1673–1677
  • Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36(4)388–393
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281)1516–1517
  • Chakraborty R, Weiss KM. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci USA 1988; 85(23)9119–9123
  • Alarcon GS, Beasley TM, Roseman JM, et al. Ethnic disparities in health and disease: The need to account for ancestral admixture when estimating the genetic contribution to both (LUMINA XXVI). Lupus 2005; 14(10)867–868
  • Schork NJ, Fallin D, Thiel B, et al. The future of genetic case-control studies. Genetic dissection of complex traits. Academic Press, San Diego 2001
  • Kim LL, Fijal BA, Witte JS. Hierarchical modeling of the relation between sequence variants and a quantitative trait: Addressing multiple comparison and population stratification issues. Genet Epidemiol 2001; 21(Suppl 1)S668–S673
  • Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. Genet Epidemiol 2002; 22(1)78–93
  • Pritchard JK, Donnelly P. Case-control studies of association in structured or admixed populations. Theor Popul Biol 2001; 60(3)227–237
  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet 2000; 67(1)170–181
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155(2)945–959
  • Satten GA, Flanders WD, Yang Q. Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am J Hum Genet 2001; 68(2)466–477
  • Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 2001; 60(3)155–166
  • Devlin B, Roeder K, Bacanu SA. Unbiased methods for population-based association studies. Genet Epidemiol 2001; 21(4)273–284
  • Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55(4)997–1004
  • Bacanu SA, Devlin B, Roeder K. The power of genomic control. Am J Hum Genet 2000; 66(6)1933–1944
  • Maltais LJ, Lovering RC, Taranin AV, et al. New nomenclature for Fc receptor-like molecules. Nat Immunol 2006; 7(5)431–432
  • Mechetina LV, Najakshin AM, Volkova OY, et al. FCRL, a novel member of the leukocyte Fc receptor family possesses unique structural features. Eur J Immunol 2002; 32(1)87–96
  • Facchetti F, Cella M, Festa S, Fremont DH, Colonna M. An unusual Fc receptor-related protein expressed in human centroblasts. Proc Natl Acad Sci USA 2002; 99(6)3776–3781
  • Masuda K, Davis RS, Maruyama T, et al. FcRY, an Fc receptor related gene differentially expressed during B lymphocyte development and activation. Gene 2005; 363: 32–40
  • Davis RS, Wang YH, Kubagawa H, Cooper MD. Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci USA 2001; 98(17)9772–9777
  • Davis RS, Li H, Chen CC, Wang YH, Cooper MD, Burrows PD. Definition of an Fc receptor-related gene (FcRX) expressed in human and mouse B cells. Int Immunol 2002; 14(9)1075–1083
  • Ehrhardt GR, Hsu JT, Gartland L, et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med 2005; 202(6)783–791
  • Guselnikov SV, Ershova SA, Mechetina LV, et al. A family of highly diverse human and mouse genes structurally links leukocyte FcR, gp42 and PECAM-1. Immunogenetics 2002; 54(2)87–95
  • Hatzivassiliou G, Miller I, Takizawa J, et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B cell malignancy. Immunity 2001; 14(3)277–289
  • Leu CM, Davis RS, Gartland LA, Fine WD, Cooper MD. FcRH1: An activation coreceptor on human B cells. Blood 2005; 105(3)1121–1126
  • Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C, Dalla-Favera R. IRTAs: A new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 2002; 99(8)2662–2669
  • Nakayama Y, Weissman SM, Bothwell AL. BXMAS1 identifies a cluster of homologous genes differentially expressed in B cells. Biochem Biophys Res Commun 2001; 285(3)830–837
  • Davis RS, Dennis G, Jr., Odom MR, et al. Fc receptor homologs: Newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 2002; 190: 123–136
  • Davis RS, Dennis G, Jr., Kubagawa H, Cooper MD. Fc receptor homologs (FcRH1-5) extend the Fc receptor family. Curr Top Microbiol Immunol 2002; 266: 85–112
  • Ehrhardt GR, Davis RS, Hsu JT, Leu CM, Ehrhardt A, Cooper MD. The inhibitory potential of Fc receptor homolog 4 on memory B cells. Proc Natl Acad Sci USA 2003; 100(23)13489–13494
  • Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005; 37(5)478–485
  • Ernst LK, Duchemin AM, Anderson CL. Association of the high-affinity receptor for IgG (Fc gamma RI) with the gamma subunit of the IgE receptor. Proc Natl Acad Sci USA 1993; 90(13)6023–6027
  • Gould HJ, Sutton BJ, Beavil AJ, et al. The biology of IGE and the basis of allergic disease. Annu Rev Immunol 2003; 21: 579–628
  • Otten MA, van Egmond M. The Fc receptor for IgA (FcalphaRI, CD89). Immunol Lett 2004; 92(1–2)23–31
  • Pfefferkorn LC, Yeaman GR. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J Immunol 1994; 153(7)3228–3236
  • Bakema JE, de Haij S, den Hartog-Jager CF, et al. Signaling through mutants of the IgA receptor CD89 and consequences for Fc receptor gamma-chain interaction. J Immunol 2006; 176(6)3603–3610
  • Wu J, Edberg JC, Gibson AW, Kimberly RP. Conservation of FcepsilonRI gamma chain coding region in normals and in SLE patients. Lupus 2002; 11(1)42–45
  • Shimizu Y, Honda S, Yotsumoto K, et al. Fc(alpha)/mu receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1. Immunogenetics 2001; 53(8)709–711
  • Shibuya A, Sakamoto N, Shimizu Y, et al. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000; 1(5)441–446
  • Sakamoto N, Shibuya K, Shimizu Y, et al. A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur J Immunol 2001; 31(5)1310–1316
  • Woof JM, Kerr MA. The function of immunoglobulin A in immunity. J Pathol 2006; 208(2)270–282
  • Hamburger AE, West AP, Jr., Bjorkman PJ. Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure 2004; 12(11)1925–1935
  • Kinet JP, Launay P. Fc alpha/microR: Single member or first born in the family?. Nat Immunol 2000; 1(5)371–372
  • Fanger MW, Shen L, Pugh J, Bernier GM. Subpopulations of human peripheral granulocyes and monocytes express receptors for IgA. Proc Natl Acad Sci USA 1980; 77(6)3640–3644
  • Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol 2003; 21: 177–204
  • Geissmann F, Launay P, Pasquier B, et al. A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 2001; 166(1)346–352
  • Pasquier B, Launay P, Kanamaru Y, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: Dual role of FcRgamma ITAM. Immunity 2005; 22(1)31–42
  • van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG. IgA and the IgA Fc receptor. Trends Immunol 2001; 22(4)205–211
  • Hamre R, Farstad IN, Brandtzaeg P, Morton HC. Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR gamma chain on myeloid cells in blood and tissue. Scand J Immunol 2003; 57(6)506–516
  • Heystek HC, Moulon C, Woltman AM, Garonne P, van Kooten C. Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation. J Immunol 2002; 168(1)102–107
  • Carayannopoulos L, Hexham JM, Capra JD. Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Calpha2 and Calpha3 in human IgA1. J Exp Med 1996; 183(4)1579–1586
  • Herr AB, White CL, Milburn C, Wu C, Bjorkman PJ. Bivalent binding of IgA1 to FcalphaRI suggests a mechanism for cytokine activation of IgA phagocytosis. J Mol Biol 2003; 327(3)645–657
  • Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 2003; 423(6940)614–620
  • Morton HC, van Zandbergen G, van Kooten C, Howard CJ, van de Winkel JG, Brandtzaeg P. Immunoglobulin-binding sites of human FcalphaRI (CD89) and bovine Fcgamma2R are located in their membrane-distal extracellular domains. J Exp Med 1999; 189(11)1715–1722
  • Morton HC, van den Herik-Oudijk IE, Vossebeld P, et al. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem 1995; 270(50)29781–29787
  • Launay P, Patry C, Lehuen A, Pasquier B, Blank U, Monteiro RC. Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J Biol Chem 1999; 274(11)7216–7225
  • Wende H, Colonna M, Ziegler A, Volz A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm Genome 1999; 10(2)154–160
  • Wagtmann N, Rojo S, Eichler E, Mohrenweiser H, Long EO. A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Curr Biol 1997; 7(8)615–618
  • de Wit TP, Morton HC, Capel PJ, van de Winkel JG. Structure of the gene for the human myeloid IgA Fc receptor (CD89). J Immunol 1995; 155(3)1203–1209
  • Koene HR, Kleijer M, Roos D, de Haas M, Von dem Borne AE. Fc gamma RIIIB gene duplication: Evidence for presence and expression of three distinct Fc gamma RIIIB genes in NA(1+,2+)SH(+) individuals. Blood 1998; 91(2)673–679
  • Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001; 11(6)1005–1017
  • Cheung J, Estivil X, Khaja R, et al. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 2003; 4(4)R25
  • Zhang L, Lu HH, Chung WY, Yang J, Li WH. Patterns of segmental duplication in the human genome. Mol Biol Evol 2005; 22(1)135–141
  • Gittinger FS, Schindler-Wuepper L, Kissel K, Bux J. Quantitative determination of Fcgamma receptor genes by means of fluorescence-based real-time polymerase chain reaction. Tissue Antigens 2002; 60(1)64–70
  • Price TH, Bowden RA, Boeckh M, et al. Phase I/II trial of neutrophil transfusions from donors stimulated with G-CSF and dexamethasone for treatment of patients with infections in hematopoietic stem cell transplantation. Blood 2000; 95(11)3302–3309
  • Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: Analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67(2)383–394
  • Fallin D, Schork NJ. Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 2000; 67(4)947–959
  • Fallin D, Cohen A, Essioux L, et al. Genetic analysis of case/control data using estimated haplotype frequencies: Application to APOE locus variation and Alzheimer's disease. Genome Res 2001; 11(1)143–151
  • Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12(5)921–927
  • Hawley ME, Kidd KK. HAPLO: A program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 1995; 86(5)409–411
  • Long JC, Williams RC, Urbanek M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 1995; 56(3)799–810
  • Reich DE, Goldstein DB. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 2001; 20(1)4–16
  • Schlesselman J. Case-control studies: Design, conduct, analysis. Oxford University Press, Oxford 1982
  • Harley JB, Moser KL, Gaffney PM, Behrens TW. The genetics of human systemic lupus erythematosus. Curr Opin Immunol 1998; 10(6)690–696
  • Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28(2)119–130
  • Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: Putting the pieces together. Genes Immun 2002; 3(Suppl 1)S71–S85
  • Croker JA, Kimberly RP. Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 2005; 17(5)529–537
  • Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38(5)550–555
  • Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76(3)528–537
  • Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: The PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76(4)561–571
  • Kaufman KM, Kelly JA, Herring BJ. Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 2006; 54(8)2533–2540
  • Lee YH, Rho YH, Choi SJ. The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 2006, June 7
  • Reddy MV, Johansson M, Sturfelt G, et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun 2005; 6(8)658–662
  • Sato H, Iwano M, Akai Y, Nishino T, Fujimoto T, Shiiki H, Dohi K. FcgammaRIIa polymorphism in Japanese patients with systemic lupus erythematosus Lupus. 2001; 10(2)97–101
  • Yun HR, Koh HK, Kim SS, Chung WT, Kim DW, Hong KP, Song GG, Chang HK, Choe JY, Bae SC, Salmon JE, Yoo DH, Kim TY, Kim SY. FcgammaRIIa polymorphism and its association with clinical manifestations in Korean lupus patients. Lupus 2001; 10(7)466–472

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.