335
Views
39
CrossRef citations to date
0
Altmetric
Original

Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE

, , , , , , , & show all
Pages 287-297 | Received 11 Sep 2007, Accepted 07 Dec 2007, Published online: 07 Jul 2009

References

  • Steinberg AD, Gourley MF, Klinman DM, Tsokos GC, Scott DE, Krieg AM. Systemic lupus erythematosus. Ann Intern Med 1991; 115: 548–559
  • Hochberg MC. Systemic lupus erythematosus. Rheum Dis Clin North Am 1990; 16: 617–639
  • Arnett FC, Reveille JD. Genetics of systemic lupus erythematosus. Rheum Dis Clin North Am 1992; 18: 865–892
  • Block SR, Winfield JB, Lochstein MC, D'Angelo WA, Christian CL. Studies of twins with systemic lupus erythematosus: A review of the literature and presentation of 12 additional sets. Am J Med 1975; 59: 533–552
  • Rich SA. Human lupus inclusions and interferon. Science 1981; 213: 772–775
  • James JJ, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJA, Harley JB. An increased prevalence of Epstein–Barr virus infection in young patientts suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997; 100: 3019–3026
  • Sabbatini A, Bombardieri S, Migliorini P. Autoantibodies form patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein–Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol 1993; 23: 1146–1152
  • Mellors RC, Mellors JW. Type C RNA virus-specific antibody in human SLE demonstrated by enzymoimmunoassay. Proc Natl Acad Sci USA 1978; 75: 2463–2467
  • Perl A. Role of endogenous retroviruses in autoimmune diseases. Rheum Dis Clin North Am 2003; 29(1)123–143, [Review, 177 Refs]
  • Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RPM, Miedema F. Programmed death of T cells in HIV infection. Science 1992; 257: 217–219
  • Emlen W, Niebur JA, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 1994; 152: 3685–3692
  • Gergely PJ, Grossman C, Niland B, Puskas F, Neupane H, Allam F, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46: 175–190
  • Perl A, Gergely P, Jr., Nagy G, Koncz A, Banki K. Mitochondrial hyperpolarization: A checkpoint of T cell life, death, and autoimmunity. Trends Immunol 2004; 25: 360–367
  • McGuinnis MH, Macher AH, Rook AH. Red cell autoantibodies in patients with AIDS. Transfusion 1986; 26: 405–409
  • Geissler RG, Rossol R, Mentzel U, Ottmann OG, Klein AS, Gute P, et al. Gamma delta-T cell-receptor positive lymphocytes inhibit human hematopoietic progenitor cell growth in HIV type I-infected patients. AIDS Res Hum Retrovirus 1996; 12: 577–584
  • Karpatkin S. HIV-1-related thrombocytopenia. Hematol Oncol Clin North Am 1990; 4: 193–218
  • Dalakas MC, Pezeshkpour GH, Gravell M, Sever JL. Polymyositis associated with AIDS retrovirus. JAMA 1986; 256: 2381–2383
  • Calabrese L. The rheumatic manifestations of infection with the HIV. Semin Arthritis Rheum 1989; 18: 225–239
  • Hicks JT, Aulakh GS, McGrath PP, Washington GC, Kim E, Alepa FP. Search for Epstein–Barr and type C oncornaviruses in systemic lupus erythematosus. Arthritis Rheum 1979; 22: 845–857
  • Yoshiki T, Mellors RC, Strand M, August JT. The viral envelope glycoprotein of murine leukemia virus and the pathoegenesis of immune complex glomerulonephritis of New Zealand mice. J Exp Med 1974; 140: 1011–1025
  • Krieg AM, Steinberg AD. Analysis of thymic endogenous retroviral expression in murine lupus. J Clin Invest 1990; 86: 809–816
  • Krieg AM, Gourley MF, Perl A. Endogenous retroviruses: Potential etiologic agents in autoimmunity. FASEB J 1992; 6: 2537–2544, [Review]
  • Banki K, Maceda J, Hurley E, Ablonczy E, Mattson DH, Szegedy L, et al. Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: A possible autoantigen for HTLV-I gag-reactive autoantibodies. Proc Natl Acad Sci USA 1992; 89: 1939–1943
  • Perl A, Colombo E, Dai H, Agarwal RK, Mark KA, Banki K, et al. Antibody reactivity to the HRES-1 endogenous retroviral element identifies a subset of patients with systemic lupus erythematosus and overlap syndromes: Correlation with antinuclear antibodies and HLA class II alleles. Arthritis Rheum 1995; 38: 1660–1671
  • Brookes SM, Pandolfino YA, Mitchell TJ, Venables TJW, Shattles WG, Clark DA, et al. The immune response to and expression of cross-reactive retroviral gag sequences in autoimmune disease. Br J Rheumatol 1992; 31: 735–742
  • Bengtsson A, Blomberg J, Nived O, Pipkorn R, Toth L, Sturfelt G. Selective antibody reactivity with peptides from human endogenous retroviruses and nonviral poly(amino acids) in patients with systemic lupus erythematosus. Arthritis Rheum 1996; 39: 1654–1663
  • Magistrelli C, Samoilova E, Agarwal RK, Banki K, Ferrante P, Vladutiu A, et al. Polymorphic genotypes of the HRES-1 human endogenous retrovirus locus correlate with systemic lupus erythematosus and autoreactivity. Immunogenetics 1999; 49: 829–834
  • Kazazian HH, Jr. L1 retrotransposons shape the mammalian genome. Science 2000; 289: 1152–1153
  • Perl A, Colombo E, Samoilova E, Butler MC, Banki K. Human transaldolase-associated repetitive elements are transcribed by RNA polymerase III. J Biol Chem 2000; 275: 7261–7272
  • Mathias SL, Scott AF, Kazazian HH, Jr., Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science 1991; 254: 1808–1810
  • Banki K, Eddy RL, Shows TB, Halladay DL, Bullrich F, Croce CM, et al. The human transaldolase gene (TALDO1) is located on chromosome 11 at p15.4–p15.5. Genomics 1997; 45: 233–238
  • Coffin JM, Hughes SH, Varmus HE. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. Retroviruses, JM Coffin, SH Hughes, HE Varmus. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1997; 343–435
  • Wilkinson DA, Mager DL, Leong J-AC. Endogenous human retroviruses. The retroviridae, JA Levy. Plenum Press, New York 1994; 465–535
  • Lusso P, Di Marzo Veronese F, Ensoli B, Franchini G, Jemma C, DeRocco SE, et al. Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science 1990; 247: 848–852
  • Mueller-Lantzsch N, Sauter M, Weiskircher A, Kramer K, Best B, Buck M, et al. Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDa protein and a functional protease. AIDS Res Hum Retroviruses 1993; 9(4)343–350
  • Hashimoto W, Osaki T, Okamura H, Robbins PD, Kurimoto M, Nagata S, et al. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas–Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol 1999; 163: 583–589
  • Kitamura Y, Ayukawa T, Ishikawa T, Kanda T, Yoshiike K. Human endogenous retrovirus K10 encodes a functional integrase. J Virol 1996; 70(5)3302–3306
  • Lower R, Tonjes RR, Korbmacher C, Kurth R, Lower J. Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J Virol 1995; 69(1)141–149
  • Yang J, Bogerd HP, Peng S, Wiegand H, Truant R, Cullen BR. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 1999; 96(23)13404–13408
  • Lower R, Boller K, Hasenmaier B, Korbmacher C, Muller-Lantzsch N, Lower J, et al. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 1993; 90(10)4480–4484
  • Medstrand P, Lindeskog M, Blomberg J. Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. J Gen Virol 1992; 73: 2463–2466
  • Krieg AM, Gourley MF, Klinman DM, Perl A, Steinberg AD. Heterogeneous expression and coordinate regulation of endogenous retroviral sequences in human peripheral blood mononuclear cells. AIDS Res Hum Retrovirus 1992; 8: 1991–1998
  • Lindeskog M, Medstrand P, Cunningham AA, Blomberg J. Coamplification and dispersion of adjacent human endogenous retroviral HERV-H and HERV-E elements; presence of spliced hybrid transcripts in normal leukocytes. Virology 1998; 244: 219–229
  • Yin H, Medstrand P, Andersson ML, Borg A, Olsson H, Blomberg J. Transcription of human endogenous retroviral sequences related to mouse mammary tumor virus in human breast and placenta: Similar pattern in most malignant and nonmalignant breast tissues. AIDS Res Hum Retroviruses 1997; 13(6)507–516
  • Hohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Sturzl M, et al. Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J Invest Dermatol 1999; 113: 587–594
  • Oldstone MBA. Molecular mimicry and autoimmune disease. Cell 1987; 50: 819–820
  • Perl A. Mechanisms of viral pathogenesis in rheumatic diseases (Invited Review). Ann Rheum Dis 1999; 58: 454–461
  • Perl A, Banki K. Human endogenous retroviral elements and autoimmunity: Data and concepts. Trends Microbiol 1993; 1: 153–156
  • Zhu ZB, Hsieh S-L, Bentley DR, Campbell D, Volanakis JE. A variable number of tandem repeat locus within the human complement C2 gene is associated with a retroposon derived from a human endogenous retrovirus. J Exp Med 1992; 175: 1783–1787
  • Watanabe-Fukunaga R, Brannan CL, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1456
  • Sicat J, Sutkowski N, Huber BT. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. J Rheumatol 2005; 32: 1821–1831
  • Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 1985; 230: 453–455
  • Haraguchi S, Good RA, Day NK. Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol Today 1995; 16: 595–603
  • Nagy G, Ward J, Mosser DD, Koncz A, Gergely P, Stancato C, et al. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J Biol Chem 2006; 281: 34574–34591
  • Ogasawara H, Naito K, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, et al. Quantitative analysis of messenger RNA of human endogenous retrovirus in systemic lupus erythematosus. J Rheumatol 2001; 29: 1678–1682
  • Piotrowski P, Duriagin S, Jagodzinski P. Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol 2005; 24(6)620–624
  • Query CC, Keene JD. A human autoimmune protein associated with U1 RNA contains a region of homology that is cross-reactive with retroviral p30gag antigen. Cell 1987; 51: 211–220
  • Tsao BP. Lupus susceptibility genes on human chromosome 1. Int Rev Immunol 2000; 19: 319–334
  • Perl A, Isaacs CM, Eddy RL, Byers MG, Sait SN, Shows TB. The human T-cell leukemia virus-related endogenous sequence (HRES1) is located on chromosome 1 at q42. Genomics 1991; 11: 1172–1173
  • Murty VVVS, Li R-G, Mathew S, Reuter VE, Bronson DL, Bosl GJ, et al. Replication error-type genetic instability at 1q42-43 in human male germ cell tumors. Cancer Res 1994; 54: 3983–3985
  • Rocchi A, Pelliccia F. Synergistic effect of DAPI and thymidylate stress conditions on the induction of common fragile sites. Cytogenet Cell Genet 1988; 48(1)51–54
  • Pelliccia F, Rocchi A. DAPI-inducible common fragile sites. Cytogenet Cell Genet 1986; 42(3)174–176
  • Groudine M, Eisenman R, Weintraub H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 1985; 292: 311–317
  • Schmid M, Ott G, Haaf T, Scheres JM. Evolutionary conservation of fragile sites induced by 5-azacytidine and 5-azadeoxycytidine in man, gorilla, and chimpanzee. Hum Genet 1985; 71(4)342–350
  • Perl A, Rosenblatt JD, Chen IS, DiVincenzo JP, Bever R, Poiesz BJ, et al. Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Res 1989; 17: 6841–6854
  • Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE, Gross LA, et al. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T-cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 1992; 35: 647–662
  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33: 1665–1673
  • Poole BD, Scofield RH, Harley JB, James JA. Epstein–Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 2006; 39(1)63–70
  • Harley JB, Harley IT, Guthridge JM, James JA. The curiously suspicious: A role for Epstein–Barr virus in lupus. Lupus 2006; 15(11)768–777, [Review, 63 Refs].
  • Gergely P, Jr., Pullmann R, Jr., Stancato C, Otvos L, Koncz A, Blazsek A, et al. Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clin Immunol 2005; 116: 124–134
  • Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 1997; 241: 92–97
  • Hino S, Miyata H. Torque teno virus (TTV): Current status. Rev Med Virol 2007; 17: 45–57
  • Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni ML. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev 2001; 14: 98–113, [Review, 191 Refs]
  • Kakkola L, Hedman K, Vanrobaeys H, Hedman L, Soderlund-Venermo M. Cloning and sequencing of TT virus genotype 6 and expression of antigenic open reading frame 2 proteins. J Gen Virol 2002; 83: 979–990
  • Okamoto H, Takahashi M, Nishizawa T, Tawara A, Sugai Y, Sai T, et al. Replicative forms of TT virus DNA in bone marrow cells. Biochem Biophys Res Commun 2000; 270: 657–662
  • Abrams MT, Robertson NM, Yoon K, Wickstrom E. Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 2004; 279(53)55809–55817
  • Garbuglia AR, Iezzi T, Capobianchi MR, Pignoloni P, Pulsoni A, Sourdis J, et al. Detection of TT virus in lymph node biopsies of B-cell lymphoma and Hodgkin's disease, and its association with EBV infection. Int J Immunopathol Pharmacol 2003; 16: 109–118
  • Clerici M, Shearer GM. The Th1-Th2 hypothesis of HIV infection: New insights. Immunol Today 1994; 15: 575–581
  • Mangeney M, de Parseval N, Thomas G, Heidmann T. The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol 2001; 82(Pt 10)2515–2518
  • Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000; 403(6771)785–789, [see comments]
  • Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 2000; 74(7)3321–3329
  • An DS, Xie Y, Chen IS. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol 2001; 75(7)3488–3489
  • Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 2001; 287(2)321–332
  • Tsumara H, Wang JZ, Ogawa S, Ohota H, Komada H, Ito Y, et al. IL-1 induces intracisternal type A virus and retrovirus type C in pancreatic beta-cells of NOD mice. J Exp Anim Sci 1994; 36(4–5)141–150
  • Katsumata K, Ikeda H, Sato M, Ishizu A, Kawarada Y, Kato H, et al. Cytokine regulation of env gene expression of human endogenous retrovirus-R in human vascular endothelial cells. Clin Immunol 1999; 93(1)75–80
  • Stauffer Y, Marguerat S, Meylan F, Ucla C, Sutkowski N, Huber B, et al. Interferon-alpha-induced endogenous superantigen. A model linking environment and autoimmunity. Immunity 2001; 15(4)591–601, [see comments]
  • Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein–Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001; 15(4)579–589, [see comments]
  • Dunn CY, Aaronson SA, Stephenson JR. Interactions of chemical inducers and steroid enhancers of endogenous mouse type-C RNA viruses. Virology 1975; 66: 579–588
  • Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 1987; 61(6)2059–2062
  • Kannan P, Buettner R, Pratt DR, Tainsky MA. Identification of a retinoic acid-inducible endogenous retroviral transcript in the human teratocarcinoma-derived cell line PA-1. J Virol 1991; 65(11)6343–6348
  • Larsson E, Venables PJ, Andersson AC, Fan W, Rigby S, Botling J, et al. Expression of the endogenous retrovirus ERV3 (HERV-R) during induced monocytic differentiation in the U-937 cell line. Int J Cancer 1996; 67(3)451–456
  • Hastings ML, Milcarek C, Martincic K, Peterson ML, Munroe SH. Expression of the thyroid hormone receptor gene, erbAa, in B lymphocytes: Alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res 1997; 25: 4296–4300
  • Li AW, Too CKL, Knee R, Wilkinson M, Murphy PR. FGF-2 antisense RNA encodes a nuclear protein with MuT-like antimutator activity. Mol Cell Endocrinol 1997; 133: 177–182
  • Baban S, Freeman JD, Mager DL. Transcripts from a novel human KRAB zinc finger gene contain spliced Alu and endogenous retroviral segments. Genomics 1996; 33(3)463–472
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science 2001; 291(5507)1304–1351, [see comment, erratum appears in Science 2001 Jun 5;292(5523):1838]
  • van der SP, Hull M, Webster P, Male P, Goud B, Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 1992, 70: 729–740
  • Meusser B, Sommer T. Vpu-mediated degradation of CD4 reconstituted in yeast reveals mechanistic differences to cellular ER-associated protein degradation. Mol Cell 2004; 14(2)247–258
  • Hoxie JA, Matthews DM, Callahan KJ, Cassel DL, Cooper RA. Transient modulation and internalization of T4 antigen induced by phorbol esters. J Immunol 1986; 137: 1194–1201
  • Lazzarino DA, Blier P, Mellman I. The monomeric guanosine triphosphatase rab4 controls an essential step on the pathway of receptor-mediated antigen processing in B cells. J Exp Med 1998; 188: 1769–1774
  • Andre P, Boretto J, Hueber AO, Regnier-Vigouroux A, Gorvel JP, Ferrier P, et al. A dominant-negative mutant of the Rab5 GTPase enhances T cell signaling by interfering with TCR down-modulation in transgenic mice. J Immunol 1997; 159(11)5253–5263
  • Haddad EK, Wu X, Hammer JA, III, Henkart PA. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. 2001; 152: 835–842, [see comment]. J Cell Biol
  • Riou C, Yassine-Diab B, Van grevenynghe J, Somogyi R, Greller LD, Gagnon D, et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J Exp Med 2006; 204: 79–91
  • Seabra MC, Mules EH, Hume AN. Rab GTPases, intracellular traffic and disease. Trends Mol Med 2002; 8(1)23–30, [Review, 65 Refs]
  • Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, et al. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Ann Rev Immunol 1999; 17: 221–253, [Review, 347 Refs]
  • Huang Y, Wange RL. T cell receptor signaling: Beyond complex complexes. J Biol Chem 2004; 279(28)28827–28830
  • Koretzky GA, Boerth NJ. The role of adapter proteins in T cell activation. Cell Mol Life Sci 1999; 56: 1048–1060, [Review, 137 Refs]
  • Lin J, Miller MJ, Shaw AS. The c-SMAC: Sorting it all out (or in). J Cell Biol 2005; 170(2)177–182
  • Thomas S, Kumar R, Preda-Pais A, Casares S, Brumeanu TD. A model for antigen-specific T-Cell anergy: Displacement of CD4-p56lck Signalosome from the lipid rafts by a soluble, dimeric peptide-MHC class II chimera. J Immunol 2003; 170(12)5981–5992
  • Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 2002; 3(3)259–264
  • Enyedy EJ, Nambiar MP, Liossis SN, Dennis G, Kammer GM, Tsokos GC. Fc epsilon receptor type I gamma chain replaces the deficient T cell receptor zeta chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum 2001; 44(5)1114–1121
  • Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J Immunol 2004; 172: 7821–7831
  • Jury EC, Kabouridis PS, Abba A, Mageed RA, Isenberg DA. Increased ubiquitination and reduced expression of LCK in T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 2003; 48(5)1343–1354
  • Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 2004; 113: 1176–1187
  • Salmeron A, Borroto A, Fresno M, Crumpton MJ, Ley SC, Alarcon B. Transferrin receptor induces tyrosine phosphorylation in T cells and is physically associated with the TCR zeta-chain. J Immunol 1995; 154(4)1675–1683
  • Ehrlich LIR, Ebert PJR, Krummel MF, Weiss A, Davis MM. Dynamics of p56lck translocation to the T Cell immunological synapse following agonist and antagonist stimulation. Immunity 2002; 17(6)809–822
  • Luton F, Legendre V, Gorvel JP, Schmitt-Verhulst AM, Boyer C. Tyrosine and serine protein kinase activities associated with ligand-induced internalized TCR/CD3 complexes. J Immunol 1997; 158(7)3140–3147
  • Chamberlain MD, Berry TR, Pastor MC, Anderson DH. The p85α subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 2004; 279(47)48607–48614
  • Cormont M, Meton I, Mari M, Monzo P, Keslair F, Gaskin C, et al. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 2003; 4(2)97–112
  • Davanture S, Leignadier J, Milani P, Soubeyran P, Malissen B, Malissen M, et al. Selective defect in antigen-induced TCR internalization at the immune synapse of CD8 T cells bearing the ZAP-70(Y292F) mutation. J Immunol 2005; 175(5)3140–3149
  • Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, et al. The immunological synapse balances T cell receptor signaling and degradation. Science 2003; 302(5648)1218–1222
  • Magistrelli C, Banki K, Ferrante P, Perl A. Mapping and cloning of polymorphic genotypes of the HRES-1 LTR. Arthritis Rheum 1994; 37: S316
  • Tsao BP, Cantor RM, Kalunian KC, Chen C-J, Badsha H, Singh R, et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99: 725–731
  • Gaffney PM, Kearns GM, Shark KB, Ortmann WA, Selby SA, Malmgren ML, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95: 14875–14879
  • Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N, et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African–American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874
  • Tsao BP, Cantor RM, Grossman JM, Shen N, Teophilov NT, Wallace DJ, et al. PARP alleles with the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 1999; 103: 1135–1140
  • Repaske R, Steele PE, O'Neill RR, Rabson AB, Martin MA. Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol 1985; 54: 764–772
  • Kjellman C, Sjogren HO, Salford LG, Widegren B. HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 1999; 239(1)99–107
  • Mager DL, Freeman JD. Human endogenous retrovirus like genome with type C pol sequences and gag sequences related to human T-cell lymphotropic viruses. J Virol 1987; 61(12)4060–4066
  • Tristem M. Identification and characterization of novel human endogenous retrovirus families by phyligenetic screening of human genome mappng project database. J Virol 2000; 74: 3715–3730
  • Weber GF, Cantor H. Phosphatidylinositol synthesis is a proximal event in intracellular signaling coupled to T cell receptor ligation. Differential induction by conventional antigen and retroviral superantigen. J Immunol 1994; 152: 4433–4443
  • Kato N, Pfeifer-Ohlsson S, Kato M, Larsson E, Rydnert J, Ohlsson R, et al. Tissue-specific expression of human provirus ERV3 mRNA in human placenta: Two of the three ERV3 mRNAs contain human cellular sequences. J Virol 1987; 61(7)2182–2191
  • Yi JM, Lee WH, Kim HM, Kim HS. Identification of new endogenous retroviral sequences belonging to the HERV-W family in human cancer cells. Intervirology 2001; 44(6)333–338
  • Bonner TI, O'Connell C, Cohen M. Cloned endogenous retroviral sequences from human DNA. Proc Natl Acad Sci USA 1982; 79(15)4709–4713
  • La Mantia G, Maglione D, Pengue G, Di Cristofano A, Simeone A, Lanfrancone L, et al. Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Res 1991; 19(7)1513–1520
  • Leib-Mosch C, Brack R, Werner T, Erfle V, Hehlmann R. Isolation of an SSAV-related endogenous sequence from human DNA. Virology 1986; 155(2)666–677
  • Blusch JH, Haltmeier M, Frech K, Sander I, Leib-Mosch C, Brack-Werner R, et al. Identification of endogenous retroviral sequences based on modular organization: Proviral structure at the SSAV1 locus. Genomics 1997; 43(1)52–61
  • Ono M, Yasunaga T, Miyata T, Ushikubo H. Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol 1986; 60(2)589–598
  • Benit L, Lallemand JB, Casella JF, Philippe H, Heidmann T. ERV-L elements: A family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol 1999; 73(4)3301–3308
  • Medstrand P, Mager DL, Yin H, Dietrich U, Blomberg J. Structure and genomic organization of a novel human endogenous retrovirus family: HERV-K (HML-6). J Gen Virol 1997; 78(Pt 7)1731–1744
  • Kohsaka H, Yamamoto K, Fujii H, Miura H, Miyasaka N, Nishioka K, et al. Fine epitope mapping of the human SS-B/La protein. Identification of a distinct autoepitope homologous to a viral gag polyprotein. J Clin Invest 1990; 85: 1566–1574
  • Talal N, Garry RF, Schur PH, Alexander S, Dauphinee MJ, Livas IH, et al. A conserved idiotype and antibodies to retroviral proteins in systemic lupus erythematosus. J Clin Invest 1990; 85: 1866–1871
  • Misaki Y, Yamamoto K, Yanagi K, Miura H, Ichijo H, Kato T, et al. B cell epitope on the U1 snRNP-C autoantigen contains a sequence similar to that of the herpes simplex virus protein. Eur J Immunol 1993; 23: 1064–1071
  • Vaughan JH, Valbracht JR, Nguyen M-D, Handley HH, Smith RS, Patrick K, et al. Epstein–Barr virus-induced autoimmune responses I. Immunoglobulin M autoantibodies to mimicking and nonmimicking Epstein–Barr virus nuclear antigen-1. J Clin Invest 1995; 95: 1306–1315
  • Vaughan JH, Nguyen M-D, Valbracht JR, Patrick K, Rhodes GH. Epstein–Barr virus-induced autoimmune responses II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. J Clin Invest 1995; 95: 1316–1327
  • Li J-M, Fan WS, Horsfall AC, Anderson AC, Rigby S, Larsson E, et al. The expression of human endogenous retrovirus-3 in fetal cardiac tissue and antibodies in congenital heart block. Clin Exp Immunol 1996; 104: 388–393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.