270
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice

, , , , , , , & show all
Pages 298-311 | Received 26 Jan 2016, Accepted 03 Apr 2016, Published online: 31 May 2016

References

  • Bossen, C., K. Ingold, A. Tardivel, et al. 2006. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281: 13964–13971
  • Hoshino, A., Y. Tanaka, H. Akiba, et al. 2003. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur. J. Immunol. 33: 861–869
  • Ito, T., R. Amakawa, M. Inaba, et al. 2004. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J. Immunol. 172: 4253–4259
  • Akiba, H., H. Oshima, K. Takeda, et al. 1999. CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J. Immunol.162: 7058–7066
  • Vetto, J. T., S. Lum, A. Morris, et al. 1997. Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. Am. J. Surg. 174: 258–265
  • Weinberg, A. D., M. M. Rivera, R. Prell, et al. 2000. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164: 2160–2169
  • Morris, A., J. T. Vetto, T. Ramstad, et al. 2001. Induction of anti-mammary cancer immunity by engaging the OX-40 receptor in vivo. Breast Cancer Res. Treat. 67: 71–80
  • Sadun, R. E., W. E. Hsu, N. Zhang, et al. 2008. Fc-mOX40L fusion protein produces complete remission and enhanced survival in 2 murine tumor models. J. Immunother. 31: 235–245
  • Redmond, W. L., C. E. Ruby, and A. D. Weinberg. 2009. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol. 29: 187–201
  • Weinberg, A. D., N. P. Morris, M. Kovacsovics-Bankowski, et al. 2011. Science gone translational: the OX40 agonist story. Immunol. Rev. 244: 218–231
  • Pakala, S. V., P. Bansal-Pakala, B. S. Halteman, and M. Croft. 2004. Prevention of diabetes in NOD mice at a late stage by targeting OX40/OX40 ligand interactions. Eur. J. Immunol. 34: 3039–3046
  • Nohara, C., H. Akiba, A. Nakajima, et al. 2001. Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J. Immunol. 166: 2108–2115
  • Weinberg, A. D., D. N. Bourdette, T. J. Sullivan, et al. 1996. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat. Med. 2: 183–189
  • Higgins, L. M., S. A. McDonald, N. Whittle, et al. 1999. Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J. Immunol. 162: 486–493
  • Vu, M. D., X. Xiao, W. Gao, et al. 2007. OX40 costimulation turns off Foxp3+ Tregs. Blood. 110: 2501–2510
  • Griseri, T., M. Asquith, C. Thompson, and F. Powrie. 2010. OX40 is required for regulatory T cell-mediated control of colitis. J. Exp. Med. 207: 699–709
  • Takeda, I., S. Ine, N. Killeen, et al. 2004. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J. Immunol. 172: 3580–3589
  • Ruby, C. E., M. A. Yates, D. Hirschhorn-Cymerman, et al. 2009. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J. Immunol. 183: 4853–4857
  • Bresson, D., G. Fousteri, Y. Manenkova, et al. 2011. Antigen-specific prevention of type 1 diabetes in NOD mice is ameliorated by OX40 agonist treatment. J. Autoimmun. 37: 342–351
  • Cheatem, D., B. B. Ganesh, E. Gangi, et al. 2009. Modulation of dendritic cells using granulocyte-macrophage colony-stimulating factor (GM-CSF) delays type 1 diabetes by enhancing CD4 + CD25+ regulatory T cell function. Clin. Immunol. 131: 260–270
  • Vasu, C., R. N. Dogan, M. J. Holterman, and B. S. Prabhakar. 2003. Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobulin-specific CD4+/CD25+ T cells and suppresses experimental autoimmune thyroiditis. J. Immunol. 170: 5511–5522
  • Gangi, E., C. Vasu, D. Cheatem, and B. S. Prabhakar. 2005. IL-10-producing CD4 + CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J. Immunol. 174: 7006–7013
  • Sheng, J. R., L. Li, B. B. Ganesh, et al. 2006. Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J. Immunol.177: 5296–5306
  • Sheng, J. R., L. C. Li, B. B. Ganesh, et al. 2008. Regulatory T cells induced by GM-CSF suppress ongoing experimental myasthenia gravis. Clin. Immunol. 128: 172–180
  • Meriggioli, M. N., J. R. Sheng, L. Li, and B. S. Prabhakar. 2008. Strategies for treating autoimmunity: novel insights from experimental myasthenia gravis. Ann. N. Y. Acad. Sci. 1132: 276–282
  • Bhattacharya, P., A. Gopisetty, B. B. Ganesh, et al. 2011. GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J. Leukoc. Biol. 89: 235–249
  • Sharma, M. D., L. Huang, J. H. Choi, et al. 2013. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity. 38: 998–1012
  • Waldron-Lynch, F., M. von Herrath, and K. C. Herold. 2008. Towards a curative therapy n type 1 diabetes: remission of autoimmunity, maintenance and augmentation of beta cell mass. Novartis. Found. Symp. 292: 146–155
  • Waid, D. M., G. M. Vaitaitis, N. D. Pennock, and D. H. Wagner Jr. 2008. Disruption of the homeostatic balance between autoaggressive (CD4 + CD40+) and regulatory (CD4 + CD25 + FoxP3+) T cells promotes diabetes. J. Leukoc. Biol. 84: 431–439
  • Akirav, E. M., J. Lebastchi, E. M. Galvan, et al. 2011. Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc. Natl. Acad. Sci. U. S. A. 108: 19018–19023
  • Gopisetty, A., P. Bhattacharya, C. Haddad, et al. 2013. OX40L/Jagged1 cosignaling by GM-CSF-induced bone marrow-derived dendritic cells is required for the expansion of functional regulatory T cells. J. Immunol. 190: 5516–5525
  • Chen, W., W. Jin, N. Hardegen, et al. 2003. Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198: 1875–1886
  • Fantini, M. C., C. Becker, G. Monteleone, et al. 2004. Cutting edge: TGF-beta induces a regulatory phenotype in CD4 + CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172: 5149–5153
  • Hoffmann, P., T. J. Boeld, R. Eder, et al. 2009. Loss of FOXP3 expression in natural human CD4 + CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39: 1088–1097
  • Tran, D. Q., J. Andersson, D. Hardwick, et al. 2009. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood. 113: 5125–5133
  • Kishimoto, H., and J. Sprent. 1997. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185: 263–271
  • Sprent, J., and H. Kishimoto. 2001. The thymus and central tolerance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356: 609–616
  • Nepom, G. T. 2012. MHC class II tetramers. J. Immunol. 188: 2477–2482
  • Zhang, L., M. Nakayama, and G. S. Eisenbarth. 2008. Insulin as an autoantigen in NOD/human diabetes. Curr. Opin. Immunol. 20: 111–118
  • Chaparro, R. J., and T. P. Dilorenzo. 2010. An update on the use of NOD mice to study autoimmune (Type 1) diabetes. Expert. Rev. Clin. Immunol. 6: 939–955
  • Daniel, D., R. G. Gill, N. Schloot, and D. Wegmann. 1995. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol. 25: 1056–1062
  • Nakayama, M., N. Abiru, H. Moriyama, et al. 2005. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 435: 220–223
  • Tang, Q., J. Y. Adams, C. Penaranda, et al. 2008. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 28: 687–697
  • Hulme, M. A., C. H. Wasserfall, M. A. Atkinson, and T. M. Brusko. 2012. Central role for interleukin-2 in type 1 diabetes. Diabetes. 61: 14–22
  • Turka, L. A., and P. T. Walsh. 2008. IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells. Front. Biosci. 13: 1440–1446
  • Komatsu, N., K. Okamoto, S. Sawa, et al. 2014. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20: 62–68
  • Zhou, X., S. L. Bailey-Bucktrout, L. T. Jeker, et al. 2009. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10: 1000–1007
  • Todd, J. A., N. M. Walker, J. D. Cooper, et al. 2007. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39: 857–864
  • Lowe, C. E., J. D. Cooper, T. Brusko, et al. 2007. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39: 1074–1082
  • Qu, H. Q., A. Montpetit, B. Ge, et al. 2007. Toward further mapping of the association between the IL2RA locus and type 1 diabetes. Diabetes. 56: 1174–1176
  • Kaminitz, A., K. Mizrahi, and N. Askenasy. 2014. Surge in regulatory T cells does not prevent onset of hyperglycemia in NOD mice: immune profiles do not correlate with disease severity. Autoimmunity. 47: 105–112
  • Zoka, A., G. Barna, A. Somogyi, et al. 2015. Extension of the CD4(+)Foxp3(+)CD25(-/low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity. 48: 289–297
  • Grinberg-Bleyer, Y., A. Baeyens, S. You, et al. 2010. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207: 1871–1878
  • Rosenzwajg, M., G. Churlaud, R. Mallone, et al. 2015. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J. Autoimmun. 58: 48–58
  • Yu, A., I. Snowhite, F. Vendrame, et al. 2015. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes. 64: 2172–2183

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.