356
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Rare autoimmune disorders with Mendelian inheritance

&
Pages 285-297 | Received 28 Jan 2016, Accepted 03 Apr 2016, Published online: 20 May 2016

References

  • Kálmán, B. 2014. Complex approaches to study complex trait genetics in multiple sclerosis. Ideggyogy Sz. 67:309–321
  • Cotsapas, C., B. F. Voight, Rossin, E., et al. 2011. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7:e1002254
  • Alpdogan, O., and M. R. van den Brink. 2012. Immune tolerance and transplantation. Semin. Oncol. 39:629–642
  • BluestoneJ. A., H. Bour-Jordan, M. Cheng, and M. Anderson.2015. T cells in the control of organ-specific autoimmunity. J. Clin. Invest. 125:2250–2260
  • Kim, J. I., D. M. Rothstein, and J. F. Markmann. 2015. Role of B cells in tolerance induction. Curr. Opin. Organ Transplant. 20:369–375
  • DeVoss, J., Y. Hou, K. Johannes, et al. 2006. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med. 203:2727–2735
  • Derbinski, J., A. Schulte, B. Kyewski, and L. Klein. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2:1032–1039
  • Bjorses, P., J. Aaltonen, N. Horelli-Kuitunen, et al. 1998. Gene defect behind APECED: a new clue to autoimmunity. Hum. Mol. Genet. 7:1547–1553
  • Oftedal, B. E., A. Hellesen, M. M. Erichsen, et al. 2015. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity. 42:1185–1196
  • Alarcon, B., D. Gil, P. Delgado, and W. W. Schamel. 2003. Initiation of TCR signaling: regulation within CD3 dimers. Immunol. Rev. 191:38–46
  • Call, M. E., J. Pyrdol, and K. W. Wucherpfennig. 2004. Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 23:2348–2357
  • Fischer, A., G. de Saint Basile, and F. Le Deist. 2005. CD3 deficiencies. Curr. Opin. Allergy Clin. Immunol. 5:491–495
  • Recio, M. J., M. A. Moreno-Pelayo, S. S. Kiliç, et al. 2007. Differential biological role of CD3 chains revealed by human immunodeficiencies. J. Immunol. 178:2556–2564
  • Gokturk, B., S. Keles, Kirac, M, et al. 2014. CD3G gene defects in familial autoimmune thyroiditis. Scand. J. Immunol. 80:354–361
  • Tokgoz, H., U. Caliskan, S. Keles, et al. 2013. Variable presentation of primary immune deficiency: two cases with CD3 gamma deficiency presenting with only autoimmunity. Pediatr. Allergy Immunol. 24:257–262
  • Lee, Y.N., F. Frugoni, K. Dobbs, et al. 2014. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J. Allergy Clin. Immunol. 133:1099–1108
  • Chen, K., W. Wu, D. Mathew, et al. 2014. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J. Allergy Clin. Immunol. 133:880–882.e10
  • Henderson, L. A., F. Frugoni, G. Hopkins, et al. 2013. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J. Allergy Clin. Immunol. 132:969–971.e1–2
  • Avila, E. M., G. Uzel, A. Hsu, et al. 2010. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 126:e1248–e1252
  • Walter, J. E., F. Rucci, L. Patrizi, et al. 2010. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J Exp Med. 207:1541–1554
  • Van Kooten, C., and J. Banchereau. 2000. CD40-CD40 ligand. J. Leukoc. Biol. 67:2–17
  • Winkelstein, J. A., M. C. Marino, H. Ochs, et al. 2003. The X-linked hyper-IgM syndrome: clinical ad immunologic features of 79 patients. Medicine (Baltimore). 82:373–384
  • Abbas, K., A. H. Lichtman, and S. Pillai. 2014. Cellular and Molecular Immunology. 8th ed. Elsevier, Philadelphia.
  • Tsai, H. Y., H. H. Yu, Y. H. Chien, et al. 2015. X-linked hyper-IgM syndrome with CD40LG mutation: two case reports and literature review in Taiwanese patients. J. Microbiol. Immunol. Infect. 48:113–118
  • Crow, Y. J., B. E. Hayward, R. Parmar, et al. 2006. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38:917–920
  • Crow, Y. J., A. Leitch, B. E. Hayward, et al. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38:910–916
  • Rice, G. I., J. Bond, A. Asipu, et al. 2009. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41:829–832
  • Rice, G. I., P. R. Kasher, G. M. Forte, et al. 2012. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44:1243–1248
  • Liu, Y., A. A. Jesus, B. Marrero, et al. 2014. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371:507–518
  • Rice, G.I., Y. del Toro Duany, E. M. Jenkinson, et al. 2014. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46:503–509
  • Ito, T., R. Amakawa, M. Inaba, et al. 2001. Differential regulation of human blood dendritic cell subsets by IFNs. J. Immunol. 166:2961–2969
  • Montoya, M., G. Schiavoni, F. Mattei, et al. 2002. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood. 99:3263–3271
  • Hervas-Stubbs, S., J. L. Perez-Gracia, A. Rouzaut, et al. 2011. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17:2619–2627
  • Perl, A. 2010. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity. 43:1–6
  • Perl, A. 2012. Oxidative stress and endosome recycling are complementary mechanisms reorganizing the T-cell receptor signaling complex in SLE. Clin. Immunol. 142:219–222
  • Perl, A. 2013. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat. Rev. Rheumatol. 9:674–686
  • Crow, M. K. 2014. Type I interferon in the pathogenesis of lupus. J. Immunol. 192:5459–5468
  • Caza, T. N., G. Talaber, and A. Perl. 2012. Metabolic regulation of organelle homeostasis in lupus T cells. Clin. Immunol. 144:200–213
  • Kuehn, H. S., W. Ouyang, B. Lo, et al. 2014. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 345:1623–1627
  • Schubert, D., C. Bode, R. Kenefeck, et al. 2014. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20:1410–1416
  • Zeissig, S., B. S. Petersen, M. Tomczak, et al. 2015. Early-onset Crohn's disease and autoimmunity associated with a variant in CTLA-4. Gut. 64:1889–1897
  • Kinnunen, T., N. Chamberlain, H. Morbach, et al. 2013. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood. 121:1595–1603
  • Schneider, H., and C. E. Rudd. 2014. Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front. Immunol. 5:619
  • Venuprasad, K. 2010. Cbl-b and Itch: Key regulators of peripheral T cell tolerance. Cancer Res. 70:3009–3012
  • Wohlfert, E. A., L. Gorelik, R. Mittler, et al. 2006. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J. Immunol. 176:1316–1320
  • Lohr, N. J., J. P. Molleston, K. A. Strauss, et al. 2010. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am. J. Hum. Genet. 86:447–453
  • Venuprasad, K., H. Huang, Y. Harada, et al. 2008. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat. Immunol. 9:245–253
  • Alessandri, C., C. Barbati, D. Vacirca, et al. 2012. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 26:4722–4732
  • Arakaki, R., A. Yamada, Y. Kudo, et al. 2014. Mechanism of activation-induced cell death of T cells and regulation of FasL expression. Crit. Rev. Immunol. 34:301–314
  • Oliveira, J. B., J. J. Bleesing, U. Dianzani, et al. 2010. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 116:e35–e40
  • Jackson, C. E., R. E. Fischer, A. P. Hsu, et al. 1999. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am. J. Hum. Genet. 64:1002–1014
  • Magerus-Chatinet, A., B. Neven, M. C. Stolzenberg, et al. 2011. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J. Clin. Invest. 121:106–112
  • Neven, B., A. Magerus-Chatinet, B. Florkin, et al. 2011. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 118:4798–4807
  • Harley, J. B., M. E. Alarcon-Riquelme, L. A. Criswell, et al. 2008. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40:204–210
  • Chun, H. J., L. Zheng, M. Ahmad, et al. 2002. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 419:395–399
  • Bolze, A., M. Byun, D. McDonald, et al. 2010. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87:873–881
  • Takagi, M., K. Shinoda, J. Piao, et al. 2011. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 117:2887–2890
  • Salzer, E., E. Santos-Valente, S. Klaver, et al. 2013. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase Cδ. Blood. 121:3112–3116
  • Oliveira, J. B. 2013. The expanding spectrum of the autoimmune lymphoproliferative syndromes. Curr. Opin. Pediatr. 25:722–729
  • Atassi, M. Z., and P. Casali. 2015. Molecular mechanisms of autoimmunity. Autoimmunity. 41:123–132
  • Nie, J., Y. Y. Li, S. G. Zheng, et al. 2015. FOXP3(+) Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6:493
  • Mohammadnia-Afrouzi, M., A. Zavaran Hosseini, A. Khalili, et al. 2015. Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients. Autoimmunity. 48:556–561
  • Bennett, C. L., J. Christie, F. Ramsdell, et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21
  • Torgerson, T. R., A. Linane, N. Moes, et al. 2007. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology. 132:1705–1717
  • Sharfe, N., H. K. Dadi, M. Shahar, and C. M. Roifman. 1997. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA. 94:3168–3171
  • Roifman, C. M. 2000. Human IL-2 receptor alpha chain deficiency. Pediatr. Res. 48:6–11
  • Caudy, A. A., S. T. Reddy, T.Chatila, et al. 2007. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119:482–487
  • Lycke, J. 2015. Monoclonal antibody therapies for the treatment of relapsing-remitting multiple sclerosis: differentiating mechanisms and clinical outcomes. Ther. Adv. Neurol. Disord. 8:274–293
  • Bernasconi, A., R. Marino, A. Ribas, et al. 2006. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics. 118:e1584–e1592
  • Walenkamp, M. J., S. Vidarsdottir, A. M. Pereira, et al. 2007. Growth hormone secretion and immunological function of a male patient with a homozygous STAT5b mutation. Eur. J. Endocrinol. 156:155–165
  • Pugliese-Pires, P. N., C. A. Tonelli, J. M. Dora, et al. 2010. A novel STAT5B mutation causing GH insensitivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur. J. Endocrinol. 163:349–355
  • Charbonnier, L. M., E. Janssen, J. Chou, et al. 2015. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J. Allergy Clin. Immunol. 135:217–227
  • Uzel, G., E. P. Sampaio, M. G. Lawrence, et al. 2013. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131:1611–1623
  • Asseman, C., S. Mauze, L. W. Leach, et al. 1999. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190:995–1004
  • Pigneur, B., J. Escher, M. Elawad, et al. 2013. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm. Bowel Dis. 19:2820–2828
  • Blundell, M. P., A. Worth, G. Bouma, and A. J. Thrasher. 2010. The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function. Dis. Markers. 29:157–175
  • Dupuis-Girod, S., J. Medioni, E. Haddad, et al. 2003. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 111:e622–e627
  • Albert, M. H., T. C. Bittner, S. Nonoyama, et al. 2010. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood. 115:3231–3238
  • Marathe, B.M., A. Prislovsky, A. Astrakhan, et al. 2009. Antiplatelet antibodies in WASP(-) mice correlate with evidence of increased in vivo platelet consumption. Exp. Hematol. 37:1353–1363
  • Marangoni, F., S. Trifari, S. Scaramuzza, et al. 2007. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J. Exp. Med. 204:369–380
  • Nikolov, N. P., M. Shimizu, S. Cleland, et al. 2010. Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood. 116:740–747
  • Becker-Herman, S., A. Meyer-Bahlburg, M. A. Schwartz, et al. 2011. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med. 208:2033–2042
  • Castiello, M. C., M. Bosticardo, F. Pala, et al. 2014. Wiskott-Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. J. Autoimmun. 50:42–50
  • Harada, Y., Y. Tanaka, M. Terasawa, et al. 2012. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood. 119:4451–4461
  • Stabile, H., C. Carlino, C. Mazza, et al. 2010. Impaired NK-cell migration in WAS/XLT patients: role of Cdc42/WASp pathway in the control of chemokine-induced beta2 integrin high-affinity state. Blood. 115:2818–2826
  • Zhang, Q., J. C. Davis, I. T. Lamborn, et al. 2009. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361:2046–2055
  • Engelhardt, K. R., S. McGhee, S. Winkler, et al. 2009. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124:1289–1302
  • Janssen, E., H. Morbach, S. Ullas, et al. 2014. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J. Allergy Clin. Immunol. 134:1365–1374
  • Chen, Z., A. Laurence, Y. Kanno, et al. 2006. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl. Acad. Sci. USA. 103:8137–8142
  • Milner, J. D., J. M. Brenchley, A. Laurence, et al. 2008. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 452:773–776
  • Chaudhry, A., D. Rudra, P. Treuting, et al. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science.326:986–991
  • Minegishi, Y., M. Saito, S. Tsuchiya, et al. 2007. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 448:1058–1062
  • Flanagan, S. E., E. Haapaniemi, M. A. Russell, et al. 2014. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46:812–814
  • Milner, J. D., T. P. Vogel, L. Forbes, et al. 2015. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 125:591–599
  • Haapaniemi, E. M., M. Kaustio, H. L. Rajala, et al. 2015. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood. 125:639–648
  • Wienke, J., W. Janssen, R. Scholman, et al. 2015. A novel human STAT3 mutation presents with autoimmunity involving Th17 hyperactivation. Oncotarget. 6:20037–20042
  • Jerez, A., M. J. Clemente, H. Makishima, et al. 2012. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 120:3048–3057
  • Koskela, H. L., S. Eldfors, P. Ellonenet al,. 2012. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366:1905–1913
  • Ishida, F., K. Matsuda, N. Sekiguchi, et al. 2014. STAT3 gene mutations and their association with pure red cell aplasia in large granular lymphocyte leukemia. Cancer Sci. 105:342–346
  • Egwuagu, C.E., and J. Larkin Iii. 2013. Therapeutic targeting of STAT pathways in CNS autoimmune diseases. JAKSTAT. 2:e24134
  • Rombergben, N., N. Chamberlain, D. Saadoun, et al. 2013. CVID-associated TACI mutations affect autoreactive B cell selection and activation. J. Clin. Invest. 123:4283–4293
  • Salzer, U., H. M. Chapel, A. D. Webster, et al. 2005. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 37:820–828
  • Castigli, E., S. A. Wilson, L. Garibyan, et al. 2005. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat. Genet. 37:829–834
  • Zhang, L., L. Radigan, U. Salzer, et al. 2007. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J. Allergy Clin. Immunol. 120:1178–1185
  • Genre, J., P. R. Errante, C. M. Kokron, et al. 2009. Reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells and diminished FOXP3 expression in patients with Common Variable Immunodeficiency: a link to autoimmunity? Clin. Immunol. 132:215–221
  • Knight, A. K., L. Radigan, T. Marron, et al. 2007. High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clin. Immunol. 124:182–189
  • Grimbacher, B., A. Hutloff, M. Schlesier, et al. 2003. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4:261–268
  • Warnatz, K., L. Bossaller, U. Salzer, et al. 2006. Human ICOS-deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood. 107:3045–3052
  • Bossaller, L., J. Burger, R. Draeger, et al. 2006. ICOS deficiency is associated with a severe reduction of CXCR5 + CD4 germinal center Th cells. J. Immunol. 177:4927–4932
  • van Zelm, M. C., I. Reisli, M. van der Burg, et al. 2006. Antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354:1901–1912
  • Hernandez-Trujillo, V. P., C. Scalchunes, C. Cunningham-Rundles, et al. 2014. Autoimmunity and inflammation in X-linked agammaglobulinemia. J. Clin. Immunol. 34:627–632
  • Ng, Y. S., H. Wardemann, J. Chelnis, et al. 2004. Bruton's tyrosine kinase is essential for human B cell tolerance. J. Exp. Med. 200:927–934
  • Gonzalez-Serrano, M. E., I. Estrada-Garcia, D. Mogica-Martinez, et al. 2012. Increased pro-inflammatory cytokine production after lipopolysaccharide stimulation in patients with X-linked agammaglobulinemia. J. Clin. Immunol. 32:967–974
  • Torisu, M., H. Sonozaki, S. Inai, and M. Arata. 1970. Deficiency of the fourth component of complement in man. J. Immunol. 104:728
  • Schaller, J. G., B. G. Gilliland, H. D. Ochs, et al. 1977. Severe systemic lupus erythematosus with nephritis in a boy with deficiency of the fourth component of component. Arthritis Rheum. 20:1519
  • Hauptmann, G., G. Tappeiner, and J. Schifferli. 1988. Inherited deficiency of the fourth component of human complement. Immunodefic. Rev. 1:3–22
  • Klemperer, M. R., H. C. Woodworth, F. S. Rosen, and K. F. Austen. 1966. Hereditary deficiency of second component of complement (C-prime-2) in man. J. Clin. Invest. 45:880–890
  • Cole, F. S., A. S. Whitehead, H. S. Auerbach, et al. 1985. The molecular basis for genetic deficiency of the second component of human complement. N. Engl. J. Med. 313:11–16
  • Glass, D., D. Raum, D. Gibson, et al. 1976. Inherited deficiency of the second component of complement: rheumatic disease associations. J. Clin. Invest. 58:853–861
  • Sanal, O., L. Yel, I. Tezcan, et al. 1996. Homozygous C2 deficiency: association with defective alternative pathway function and immunoglobulin deficiency. Int. Arch. Allergy Immunol. 110:195–198
  • Gewurz, A., T. F. Lint, J. L. Roberts, et al. 1978. Homozygous C2 deficiency with fulminant lupus erythematosus: severe nephritis via the alternative complement pathway. Arthritis Rheum. 21:28–36
  • D’Cruz, D., J. Taylor, T. Ahmed, et al. 1992. Complement factor 2 deficiency: a clinical and serological family study. Ann. Rheum. Dis. 51:1254–1256
  • Lipsker, D. M., C. Schreckenberg-Gilliot, B. Uring-Lambert, et al. 2000. Lupus erythematosus associated with genetically determined deficiency of the second component of the complement. Arch. Dermatol. 136:1508–1514
  • Marder, R. J., R. Rent, E. Z. Choi, and H. Gewurz. 1976. C1q deficiency associated with urticarial-like lesions and cutaneous vasculitis. Am. J. Med. 61:560–565
  • Slingsby, J. H., P. Norsworthy, G. Pearce, et al. 1996. Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum. 39:663–670
  • Berkel, A. I., E. Birben, C. Oner, et al. 2000. Molecular, genetic and epidemiologic studies on selective complete C1q deficiency in Turkey. Immunobiology. 201:347–355
  • Marquart, H. V., L. Schejbel, A. Sjoholm, et al. 2007. C1q deficiency in an Inuit family: identification of a new class of C1q disease-causing mutations. Clin. Immunol. 124:33–40
  • Davies, E. G., and A. J. Thrasher. 2010. Update on the hyper immunoglobulin M syndromes. Br. J. Haematol. 149:167–180
  • Notarangelo, L. D., M. Duse, and A. G. Ugazio. 1992. Immunodeficiency with hyper-IgM (HIM). Immunodefic. Rev. 3:101–121
  • Korthauer, U., D. Graf, H. W. Mages, et al. 1993. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 361:539–541
  • Ferrari, S., S. Giliani, A. Insalaco, et al. 2001. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA. 98:12614–12619
  • Levy, J., T. Espanol-Boren, C. Thomas, et al. 1997. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 131:47–54
  • Wang, L. L., W. Zhou, W. Zhao, et al. 2014. Clinical features and genetic analysis of 20 Chinese patients with X-linked hyper-IgM syndrome. J. Immunol. Res. 2014:683160
  • Revy, P., T. Muto, Y. Levy, et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2) Cell. 102:565–575
  • Imai, K., Y. Zhu, P. Revy, et al. 2005. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin. Immunol. 115:277–285
  • Quartier, P., J. Bustamante, O. Sanal, et al. 2004. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin. Immunol. 110:22–29
  • Detanico, T., J. B. St Clair, K. Aviszus K, et al. 2013. Somatic mutagenesis in autoimmunity. Autoimmunity. 46:102–114
  • Steimle, V., L. A. Otten, M. Zufferey, and B. Mach. 1993. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 75:135–146
  • Villard, J., B. Lisowska-Grospierre, P. van den Elsen, et al. 1997. Mutation of RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N. Engl. J. Med. 337:748–753
  • Masternak, K., A. Muhlethaler-Mottet, J. Villard, et al. 2000. Molecular genetics of the Bare lymphocyte syndrome. Rev. Immunogenet. 2:267–282
  • Klein, C., B. Lisowska-Grospierre, F. LeDeist, et al. 1993. Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J. Pediatr. 123:921–928
  • Saleem, M. A., P. D. Arkwright, E. G. Davies, et al. 2000. Clinical course of patients with major histocompatibility complex class II deficiency. Arch. Dis. Child. 83:356–359
  • Rathmell, J. C., S. E. Townsend, J. C. Xu, et al. 1996. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell. 87:319–329
  • Herve, M., I. Isnardi, Y. S. Ng, et al. 2007. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J. Exp. Med. 204:1583–1593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.