332
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Ex vivo expanded regulatory T cells CD4+CD25+FoxP3+CD127Low develop strong immunosuppressive activity in patients with remitting-relapsing multiple sclerosis

, , , , , & show all
Pages 388-396 | Received 08 Dec 2015, Accepted 21 May 2016, Published online: 16 Jul 2016

References

  • Kukreja, A., G. Cost, J. Marker, et al. 2002. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109: 131–140
  • De Kleer, I. M., L. R. Wedderburn, L. S. Taams, et al. 2004. CD4 + CD25 bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172: 6435–6443
  • Crispin, J. C., J. Alcocer-Varela, P. de Pablo, et al. 2003. Immunoregulatory defects in patients with systemic lupus erythematosus in clinical remission. Lupus. 12: 386–393
  • Valencia, X., C. Yarboro, G. Illei, and P. E. Lipsky. 2007. Deficient CD4 + CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol. 178: 2579–2588
  • Lyssuk, E. Y., A. V. Torgashina, S. K. Soloviev, et al. 2007. Reduced number and function of CD4 + CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus. Adv. Exp. Med. Biol. 601: 113–119
  • Venken, K., N. Hellings, M. Thewissen, et al. 2008. Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology. 123: 79–89
  • Buckner, J. H. 2010. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nature Rev. Immunol. 10: 849–859
  • Afzali, B., F. C. Edozie, H. Fazekasova, et al. 2013. Comparison of regulatory T cells in hemodialysis patients and healthy controls: implications for cell therapy in transplantation. Clin. J. Am. Soc. Nephrol. 8: 1396–1405
  • Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nature Immunol. 4: 330–336
  • Williams, L. M., and A. Y. Rudensky. 2007. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunol. 8: 277–284
  • Gambineri, E., T. R. Torgerson, and H. D. Ochs. 2003. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15: 430–435
  • Liu, W., A. L. Putnam, Z. Xu-Yu, et al. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203: 1701–1711
  • Seddiki, N., B. Santner-Nanan, J. Martinson, et al. 2006. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203: 1693–1700
  • Hartigan-O’Connor, D. J., C. Poon, E. Sinclair, and J. M. McCune. 2007. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Meth. 319: 41–52
  • Yadav, M., S. Stephan, and J. A. Bluestone. 2013. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front. Immunol. 4: 232
  • Rossetti, M., R. Spreafico, S. Saidin, et al. 2015. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. J. Immunol. 194: 113–124
  • Bach, J. F., and L. Chatenoud. 2001. Tolerance to islet autoantigens in type 1 diabetes. Ann. Rev. Immunol. 19: 131–161
  • Kohm, A. P., P. A. Carpentier, H. A. Anger, and S. D. Miller. 2002. Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169: 4712–4716
  • Wu, A. J., H. Hua, S. H. Munson, and H. O. McDevitt. 2002. Tumor necrosis factor-alpha regulation of CD4 + CD25+ T cell levels in NOD mice. Proc. Natl. Acad. Sci. USA. 99: 12287–12292
  • Hoffmann, P., J. Ermann, M. Edinger, et al. 2002. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196: 389–399
  • Mekala, D. J., and T. L. Geiger. 2005. Immunotherapy of autoimmune encephalomyelitis with redirected CD4 + CD25+ T lymphocytes. Blood. 105: 2090–2092
  • Miyara, M., G. Gorochov, M. Ehrenstein, et al. 2011. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Rev. 10: 744–755
  • Ukena, S. N., M. Höpting, S. Velaga, et al. 2011. Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity. Exp. Hematol. 39: 1152–1160
  • Hoffmann, P., R. Eder, L. A. Kunz-Schughart, et al. 2004. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 104: 895–903
  • Golovina, T. N., T. Mikheeva, T. M. Brusko, et al. 2011. Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PLoS One. 6: e15868
  • Peters, J. H., H. J. P. M. Koenen, L. B. Hilbrands, and I. Joosten. 2009. Immunotherapy with regulatory T cells in transplantation. Immunotherapy. 1: 855–871
  • Battaglia, M., A. Stabilini, and E. Tresoldi. 2012. Expanding human T regulatory cells with the mTOR-inhibitor rapamycin. Meth. Mol. Biol. 821: 279–293
  • Okubo, Y., T. Mera, L. Wang, and D. L. Faustman. 2013. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2. Scientific Rep. 3: 3153
  • Zheng, S. G., J. Wang, P. Wang, et al. 2007. IL-2 is essential for TGF-beta to convert naive CD4 + CD25- cells to CD25 + Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178: 2018–2027
  • Chen, W., W. Jin, N. Hardegen, et al. 2003. Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198: 1875–1886
  • Fantini, M. C., C. Becker, G. Monteleone, et al. 2004. Cutting edge: TGF-beta induces a regulatory phenotype in CD4 + CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172: 5149–5153
  • McDonald, W. I., A. Compston, G. Edan, et al. 2001. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50: 121–127
  • Wieczorek, G., A. Asemissen, F. Model, et al. 2009. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 69: 599–608
  • Hippen, K. L., S. C. Merkel, D. K. Schirm, et al. 2011. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci. Trans. Med. 3: 83ra41
  • Wahl, S. M. 1994. Transforming growth factor beta: the good, the bad, and the ugly. J. Exp. Med. 180: 1587–1590
  • Massagué, J., S. W. Blain, and R. S. Lo. 2000. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103: 295–309
  • Fu, S., N. Zhang, A. C. Yopp, et al. 2004. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am. J. Transplant. 4: 1614–1627
  • Yamagiwa, S., J. D. Gray, S. Hashimoto, and D. A. Horwitz. 2001. A role for TGF-beta in the generation and expansion of CD4 + CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166: 7282–7289
  • Zheng, S. G., J. D. Gray, K. Ohtsuka, et al. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4 + CD25- precursors. J. Immunol. 169: 4183–4189
  • Khoury, S. J., C. R. Guttmann, E. J. Orav, et al. 2000. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch. Neurol. 57: 1183–1189
  • Viglietta, V., C. Baecher-Allan, H. L. Weiner, and D. A. Hafler. 2004. Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199: 971–979
  • Haas, J., M. Maas-Enriquez, and H.-P. Hartung. 2005. Intravenous immunoglobulins in the treatment of relapsing remitting multiple sclerosis - results of a retrospective multicenter observational study over five years. Mult. Scler. 11: 562–567
  • Floess, S., J. Freyer, C. Siewert, et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5: e38
  • Getnet, D., J. F. Grosso, M. V Goldberg, et al. 2010. A role for the transcription factor Helios in human CD4(+)CD25(+) regulatory T cells. Mol. Immunol. 47: 1595–1600
  • Thornton, A. M., P. E. Korty, D. Q. Tran, et al. 2010. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184: 3433–3441
  • Himmel, M. E., K. G. MacDonald, R. V. Garcia, et al. 2013. Helios + and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol. 190: 2001–2008
  • Gottschalk, R. A., E. Corse, and J. P. Allison. 2012. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J. Immunol. 188: 976–980
  • Sansom, D. M., and L. S. K. Walker. 2006. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 212: 131–148
  • Tang, Q., E. K. Boden, K. J. Henriksen, et al. 2004. Distinct roles of CTLA-4 and TGF-beta in CD4 + CD25+ regulatory T cell function. Eur. J. Immunol. 34: 2996–3005
  • Tivol, E. A., F. Borriello, A. N. Schweitzer, et al. 1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3: 541–547
  • Bradley, J. R. 2008. TNF-mediated inflammatory disease. J. Pathol. 214: 149–160
  • Wong, M., D. Ziring, Y. Korin, et al. 2008. TNFalpha blockade in human diseases: mechanisms and future directions. Clin. Immunol. 126: 121–136
  • Chen, X., J. J. Subleski, H. Kopf, et al. 2008. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4 + CD25 + FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180: 6467–6471

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.