150
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Novel model of double transgenic mouse results in autoimmune diabetes in males

, , &
Pages 397-404 | Received 13 Jan 2016, Accepted 06 Jun 2016, Published online: 11 Aug 2016

References

  • Fairweather, D., S. Frisancho-Kiss, and N. R. Rose. 2008. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173: 600–609
  • Quintero, O. L., M. J. Amador-Patarroyo, G. Montoya-Ortiz, et al. 2012. Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J. Autoimmun. 38: J109–J119
  • Ackerman, L. S. 2006. Sex hormones and the genesis of autoimmunity. Arch. Dermatol. 142: 371–376
  • Dalal, M., S. Kim, and R. R. Voskuhl. 1997. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159: 3–6
  • Palaszynski, K. M., K. K. Loo, J. F. Ashouri, et al. 2004. Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J. Neuroimmunol. 146: 144–152
  • Pennell, L. M., C. L. Galligan, and E. N. Fish. 2012. Sex affects immunity. J. Autoimmun. 38: J282–J291
  • Spector, T. D., L. A. Perry, G. Tubb, et al. 1988. Low free testosterone levels in rheumatoid arthritis. Ann. Rheum. Dis. 47: 65–68
  • Tomassini, V., E. Onesti, C. Mainero, et al. 2005. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatr. 76: 272–275
  • Markle, J. G., D. N. Frank, S. Mortin-Toth, et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 339: 1084–1088
  • Yoon, J. W., H. S. Jun, and P. Santamaria. 1998. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity. 27: 109–122
  • Baekkeskov, S., H. J. Aanstoot, S. Christgau, et al. 1990. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 347: 151–156
  • Bottazzo, G. F., and D. Doniach. 1976. Pancreatic autoimmunity and HLA antigens. Lancet. 2: 800
  • Palmer, J. P., C. M. Asplin, P. Clemons, et al. 1983. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 222: 1337–1339
  • Atkinson, M. A., and N. K. Maclaren. 1994. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med. 331: 1428–1436
  • Itoh, N., T. Hanafusa, A. Miyazaki, et al. 1993. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J. Clin. Invest. 92: 2313–2322
  • Skowera, A., R. J. Ellis, R. Varela-Calvino, et al. 2008. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118: 3390–3402
  • Walter, U., and P. Santamaria. 2005. CD8+ T cells in autoimmunity. Curr. Opin. Immunol. 17: 624–631
  • Bendelac, A., C. Carnaud, C. Boitard, and J. F. Bach. 1987. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med. 166: 823–832
  • DiLorenzo, T. P., and D. V. Serreze. 2005. The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice. Immunol. Rev. 204: 250–263
  • Wong, F. S., I. Visintin, L. Wen, et al. 1996. CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J. Exp. Med. 183: 67–76
  • Wang, B., A. Gonzalez, C. Benoist, and D. Mathis. 1996. The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol. 26: 1762–1769
  • Nejentsev, S., J. M. Howson, N. M. Walker, et al. 2007. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 450: 887–892
  • Serreze, D. V., H. D. Chapman, D. S. Varnum, et al. 1997. Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J. Immunol. 158: 3978–3986
  • Arndt, B., L. Witkowski, J. Ellwart, and J. Seissler. 2015. CD8+ CD122+ PD-1− effector cells promote the development of diabetes in NOD mice. J. Leukoc. Biol. 97: 111–120
  • Brauner, H., H. T. Hall, M. Flodstrom-Tullberg, et al. 2016. Depletion of IL-2 receptor β-positive cells protects from diabetes in non-obese diabetic mice. Immunol. Cell Biol. 94: 177–184
  • Chabot, S., A. Fakhfakh, K. Beland, et al. 2013. Mouse liver-specific CD8(+) T-cells encounter their cognate antigen and acquire capacity to destroy target hepatocytes. J. Autoimmun. 42: 19–28
  • Djilali-Saiah, I., P. Lapierre, S. Vittozi, and F. Alvarez. 2002. DNA vaccination breaks tolerance for a neo-self antigen in liver: a transgenic murine model of autoimmune hepatitis. J. Immunol. 169: 4889–4896
  • Li, S., Q. Xie, Y. Zeng, et al. 2014. A naturally occurring CD8(+)CD122(+) T-cell subset as a memory-like Treg family. Cell Mol. Immunol. 11: 326–331
  • Taneja, V., and C. S. David. 2001. Lessons from animal models for human autoimmune diseases. Nat. Immunol. 2: 781–784
  • Nussinovitch, U., and Shoenfeld Y. 2012. The role of gender and organ specific autoimmunity. Autoimmun. Rev. 11: A377–A385
  • Yurkovetskiy, L., M. Burrows, A. A. Khan, et al. 2013. Gender bias in autoimmunity is influenced by microbiota. Immunity. 39: 400–412
  • Pearson, J. A., T. C. Thayer, J. E. McLaren, et al. 2016. Proinsulin expression shapes the TCR repertoire but fails to control the development of low avidity insulin-reactive CD8+ T cells. Diabetes. 65: 1679–1689
  • Sprent, J., and C. D. Surh. 2011. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12: 478–484
  • Bamford, R. N., A. J. Grant, J. D. Burton, et al. 1994. The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. USA. 91: 4940–4944
  • Giri, J. G., M. Ahdieh, J. Eisenman, et al. 1994. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13: 2822–2830
  • Fehniger, T. A., and M. A. Caligiuri. 2001. Interleukin 15: biology and relevance to human disease. Blood. 97: 14–32
  • Kuczynski, S., H. Winiarska, M. Abramczyk, et al. 2005. IL-15 is elevated in serum patients with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 69: 231–236
  • Ma, A., R. Koka, and P. Burkett. 2006. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24: 657–679
  • Van Belle, T. L., H. Dooms, T. Boonefaes, et al. 2012. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25 High CD4+ T cells. PLoS One. 7: e45299
  • Dai, H., N. Wan, S. Zhang, et al. 2010. Cutting edge: programmed death-1 defines CD8 + CD122+ T cells as regulatory versus memory T cells. J. Immunol. 185: 803–807
  • Walzer, T., C. Arpin, L. Beloeil, and J. Marvel. 2002. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J. Immunol. 168: 2704–2711
  • Sakuraba, K., K. Shibata, Y. Iwamoto, et al. 2013. Naturally occurring PD-1+ memory phenotype CD8 T cells belong to nonconventional CD8 T cells and are cyclophosphamide-sensitive regulatory T cells. J. Immunol. 190: 1560–1566
  • Endharti, A. T., I. M. Rifa, Z. Shi, et al. 2005. Cutting edge: CD8 + CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J. Immunol. 175: 7093–7097
  • Rifa'i, M., Z. Shi, S. Y. Zhang, et al. 2008. CD8 + CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int. Immunol. 20: 937–947
  • Mangalam, A. K., D. Luckey, S. Giri, et al. 2012. Two discreet subsets of CD8 T cells modulate PLP(91-110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J. Autoimmun. 38: 344–353
  • Shameli, A., J. Yamanouchi, S. Tsai, et al. 2013. IL-2 promotes the function of memory-like autoregulatory CD8+ T cells but suppresses their development via FoxP3+ Treg cells. Eur. J. Immunol. 43: 394–403
  • Christen, U., E. Hintermann, M. Holdener, and M. G. von Herrath. 2010. Viral triggers for autoimmunity: is the ‘glass of molecular mimicry’ half full or half empty? J. Autoimmun. 34: 38–44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.