341
Views
12
CrossRef citations to date
0
Altmetric
Original Article

T regulatory lymphocytes in type 1 diabetes: Impaired CD25 expression and IL-2 induced STAT5 phosphorylation in pediatric patients

, , , , , , , , & show all
Pages 523-531 | Received 03 Nov 2015, Accepted 16 Jul 2016, Published online: 25 Aug 2016

References

  • Noble, J. A., and A. M. Valdes. 2011. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diabetes Rep. 11: 533–542
  • Nokoff, N., and M. Rewers. 2013. Pathogenesis of type 1 diabetes: lessons from natural history studies of high-risk individuals. Ann. N. Y. Acad. Sci. 1281: 1–15
  • Thomson, G., A. M. Valdes, J. A. Noble, et al. 2007. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Tissue Antigens. 7: 110–127
  • Wagner, A. M., A. Santana, M. Hernndez, et al. 2011. Predictors of associated autoimmune diseases in families with type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium. Diabetes/Metab. Res. Rev. 27: 493–498
  • Todd, J. A. 2010. Etiology of type 1 diabetes. Immunity 32: 457–467
  • Geenen, V., G. Bodart, S. Henry, et al. 2013. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front. Neurosci. 7: 187
  • Geenen, V. 2012. Thymus and type 1 diabetes: an update. Diabetes Res. Clin. Pract. 98: 26–32
  • Fuhlbrigge, R., and L. Yip. 2014. Self-antigen expression in the peripheral immune system: roles in self-tolerance and type 1 diabetes pathogenesis. Curr. Diabetes Rep. 14: 525
  • Jeker, L. T., H. Bour-Jordan, and J. A. Bluestone. 2012. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb. Perspect. Med. 2: 187
  • Lin, X., M. Chen, Y. Liu, et al. 2013. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int. J. Clin. Exp. Pathol. 6: 26–123
  • Verbsky, J. W., and T. A. Chatila. 2013. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr. Opin. Pediatr. 25: 708–714
  • Rudensky, A. Y. 2011. Regulatory T cells and Foxp3. Immunol. Rev. 241: a007807–268
  • Letourneau, S., C. Krieg, G. Pantaleo, and O. Boyman. 2009. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J. Allergy Clin. Immunol. 123: 116–762
  • Golding, A., S. Hasni, G. Illei, and E. M. Shevach. 2013. The percentage of FoxP3 + Helios + Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum. 65: 2898–2906
  • Kukreja, A., G. Cost, J. Marker, et al. 2002. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109: 131–140
  • Brusko, T. M., C. H. Wasserfall, M. J. Clare-Salzler, et al. 2005. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414
  • Lawson, J. M., J. Tremble, C. Dayan, et al. 2008. Increased resistance to CD4 + CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin. Exp. Immunol. 154: 353–359
  • Li, C. R., B. J. Baaten, and L. M. Bradley. 2012. Harnessing memory adaptive regulatory T cells to control autoimmunity in type 1 diabetes. J. Mol. Cell Biol. 4: 131–147
  • Kelley, C. M., T. Ikeda, J. Koipally, et al. 1998. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Biol. 8: 508–515
  • Sugimoto, N., T. Oida, K. Hirota, et al. 2006. Foxp3-dependent and-independent molecules specific for CD25 + CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18: 353–1209
  • Thornton, A. M., P. E. Korty, D. Q. Tran, et al. 2010. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184: 38–3441
  • Raffin, C., P. Pignon, C. Celse, et al. 2013. Human memory Helios-FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1beta by downregulating their suppressor functions. J. Immunol. 191: 4619–4627
  • Du, W., Y. W. Shen, W. H. Lee, et al. 2013. Foxp3+ Treg expanded from patients with established diabetes reduce Helios expression while retaining normal function compared to healthy individuals. PLoS One 8: e56209
  • McClymont, S. A., A. L. Putnam, M. R. Lee, et al. 2011. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186: 3918–3926
  • Saadoun, D., M. Rosenzwajg, F. Joly, et al. 2011. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365: 2067–2077
  • Burchill, M. A., J. Yang, K. B. Vang, and M. A. Farrar. 2007. Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol. Lett. 114: 1–8
  • Malek, T. R., and A. L. Bayer. 2004. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4: 665–674
  • Antov, A., L. Yang, M. Vig, et al. 2003. Essential role for STAT5 signaling in CD25 + CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J. Immunol. 171: 2067–3441
  • Hulme, M. A., C. H. Wasserfall, M. A. Atkinson, and T. M. Brusko. 2012. Central role for interleukin-2 in type 1 diabetes. Diabetes 61: 14–22
  • Brusko, T., C. Wasserfall, K. McGrail, et al. 2007. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56: 604–612
  • Luczynski, W., A. Stasiak-Barmuta, R. Urban, et al. 2009. Lower percentages of T regulatory cells in children with type 1 diabetes – preliminary report. Pediatr. Endocrinol. Diabetes Metab. 15: 3435–3438
  • Szypowska, A., A. Stelmaszczyk-Emmel, U. Demkow, and W. Luczynski. 2012. Low frequency of regulatory T cells in the peripheral blood of children with type 1 diabetes diagnosed under the age of five. Arch. Immunol. Ther. Exp. 60: 307–313
  • Zahran, A. M., K. I. Elsayh, and K. A. Metwalley. 2012. Regulatory T cells in children with recently diagnosed type 1 diabetes. Indian J. Endocrinol. Metab. 16: 952–957
  • Zeng, C., X. Shi, B. Zhang, et al. 2012. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J. Mol. Med. 90: 175–186
  • Zhen, Y., L. Sun, H. Liu, et al. 2012. Alterations of peripheral CD4 + CD25 + Foxp3+ T regulatory cells in mice with STZ-induced diabetes. Cell Mol. Immunol. 9: 75–85
  • Rewers, M. J., K. Pillay, C. de Beaufort, et al. 2014. ISPAD Clinical Practice Consensus Guidelines 2014. Assessment and monitoring of glycemic control in children and adolescents with diabetes. Pediatr. Diabetes 15: 102–114
  • Dendrou, C. A., L. S. Wicker. 2008. The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J. Clin. Immunol. 28: 175–696
  • Lowe, C. E., J. D. Cooper, T. Brusko, et al. 2007. Large-scale genetic fine mapping and genotype–phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39: 75–1082
  • Long, S. A., K. Cerosaletti, P. L. Bollyky, et al. 2010. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes 59: 407–415
  • Zoka, A., G. Barna, A. Somogyi, et al. 2015. Extension of the CD4(+)Foxp3(+)CD25(-/low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity 48: 685–697
  • Tang, Q., J. Y. Adams, C. Penaranda, et al. 2008. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28: 687–697
  • Klatzmann, D., and A. K. Abbas. 2015. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15: 283–294
  • Rosenzwajg, M., G. Churlaud, A. Hartemann, and D. Klatzmann. 2014. Interleukin 2 in the pathogenesis and therapy of type 1 diabetes. Curr. Diabetes Rep. 14: 289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.