417
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Neutrophils releasing IL-17A into NETs are essential to plasma cell differentiation in inflamed tissue dependent on IL-1R

, , , , &
Pages 86-101 | Received 17 Jun 2016, Accepted 16 Oct 2016, Published online: 23 Dec 2016

References

  • Yoshida, T., Mei, H., Dorner, T., Hiepe, F., et al 2010. Memory B and memory plasma cells. Immunol. Rev. 237: 117–139
  • Kometani, K. and Kurosaki, T. 2015. Differentiation and maintenance of long-lived plasma cells. Curr. Opin. Immunol. 33: 64–69
  • Halliley, J. L., Tipton, C. M., Liesveld, J., et al 2015. Long-lived plasma cells are contained within the CD19 − CD38hiCD138+ subset in human bone marrow. Immunity. 43: 132–145
  • Lacotte, S., Decossas, M., Le Coz, C., Brun, S., et al 2013. Early differentiated CD138(high) MHCII + IgG + plasma cells express CXCR3 and localize into inflamed kidneys of lupus mice. PLoS One. 8: e58140. doi: 10.1371/journal.pone.0058140
  • Fossiez, F., Djossou, O., Chomarat, P., et al 1996. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183: 2593–2603
  • Cua, D. J., and Tato, C. M. 2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10: 479–489
  • Weiss, S.J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 320: 365–376
  • Nathan, C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6: 173–182
  • Hoshino, A., Nagao, T., Nagi-Miura, N., et al 2008. MPO-ANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner. J. Autoimmun. 31: 79–89
  • Li, L., Huang, L., Vergis, A. L., et al 2010. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120: 331–342
  • Werner, J. L., Gessner, M. A., Lilly, L. M., et al 2011. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect. Immun. 79: 3966–3977
  • Tan, Z., Jiang, R., Wang, X., et al 2013. RORγt + IL-17+ neutrophils play a critical role in hepatic ischemia-reperfusion injury. J. Mol. Cell. Biol. 5: 143–146
  • Coccia, M., Harrison, O. J., Schiering, C., et al 2012. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med. 209: 1595–1609
  • Papayannopoulos, V., Metzler, K. D., Hakkim, A., Zychlinsky, A. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 191: 677–691
  • Lopes-Ferreira, M., Grund, L. Z., Lima, C. 2014. Thalassophryne nattereri fish venom: from the envenoming to the understanding of the immune system. J. Venom. Anim. Toxins. Incl. Trop. Dis. 20: 35. doi: 10.1186/1678-9199-20-35
  • Grund, L. Z., Souza, V. M. O., Faquim-Mauro, E. L., et al 2006. Experimental immunization with Thalassophryne nattereri fish venom: striking IL-5 production and impaired of B220+ cells. Toxicon. 48: 499–508
  • Grund, L. Z., Komegae, E. N., Lopes-Ferreira, M., Lima, C. 2012. IL-5 and IL-17A are critical for the chronic IgE response and differentiation of long-lived antibody-secreting cells in inflamed tissues. Cytokine. 59: 335–351
  • Grund, L. Z., Lopes-Ferreira, M., Lima, C. 2013. The hierarchical process of differentiation of long-lived antibody-secreting cells is dependent on integrated signals derived from antigen and IL-17A. PLoS One. 8: e74566. doi: 10.1371/journal.pone.0074566
  • Komegae, E. N., Grund, L. Z., Lopes-Ferreira, M., Lima, C. 2013a. The longevity of Th2 humoral response induced by proteases Natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS One. 8: e67135. doi: 10.1371/journal.pone.0067135
  • Komegae, E. N., Grund, L. Z., Lopes-Ferreira, M., Lima, C. 2013b. TLR2, TLR4 and the MyD88 signaling are crucial for the in vivo generation and the longevity of long-lived antibody-secreting cells. PLoS One. 8: e71185. doi: 10.1371/journal.pone.0071185
  • Lopes-Ferreira, M., Emim, J. A., Oliveira, V., et al 2004. Kininogenase activity of Thalassophryne nattereri fish venom. Biochem. Pharmacol. 68: 2151–2157
  • Kuida, K., Lippke, J.A., Ku, G., et al 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science. 267: 2000–2003
  • Hakkim, A., Fuchs, T. A., Martinez, N. E., et al 2011. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7: 75–77
  • Lande, R., Gregorio, J., Facchinetti, V., et al 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449: 564–569
  • Sangaletti, S., Tripodo, C., Chiodoni, C., et al 2012. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 120: 3007–3018
  • Tillack, K., Breiden, P., Martin, R., Sospedra, M. 2012. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 188: 3150–3159
  • Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M., Corcoran, L. M. 2015. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15: 160–171
  • Rozanski, C. H., Arens, R., Carlson, L. M., et al 2011. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J. Exp. Med. 208: 1435–1446
  • Rozanski, C. H., Utley, A., Carlson, L. M., et al 2015. CD28 promotes plasma cell survival, sustained antibody responses, and BLIMP-1 upregulation through its distal PYAP proline motif. J. Immunol. 194: 4717–4728
  • Njau, M. N., Kim, J. H., Chappell, C. P., et al 2012. CD28-B7 interaction modulates short- and long-lived plasma cell function. J. Immunol. 189: 2758–2767
  • King, C. L., Xianli, J., June, C. H., et al 1996. CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur. J. Immunol. 26: 2448–2455
  • Gause, W. C., Chen, S. J., Greenwald, R. J., et al 1997. CD28 dependence of T cell differentiation to IL-4 production varies with the particular type 2 immune response. J. Immunol. 158: 4082–4087
  • Liu, Z., Liu, Q., Pesce, J., et al 2002. Nippostrongylus brasiliensis can induce B7-independent antigen-specific development of IL-4-producing T cells from naive CD4 T cells in vivo. J. Immunol. 169: 6959–6968
  • Egen, J. G., Kuhns, M. S., Allison, J. P. 2002. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3: 611–618
  • Linsley, P. S., Wallace, P. M., Johnson, J., et al 1992. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 257: 792–795
  • Oaks, M. K., Hallett, K. M., Penwell, R. T., et al 2000. A native soluble form of CTLA-4. Cell. Immunol. 201: 144–153
  • Knoerzer, D. B., Karr, R. W., Schwartz, B. D., Mengle-Gaw, L. J. 1995. Collagen-induced arthritis in the BB rat. Prevention of disease by treatment with CTLA-4-Ig. J. Clin. Invest. 96: 987–993
  • Pearson, T. C., Alexander, D. Z., Hendrix, R., et al 1996. CTLA4-Ig plus bone marrow induces long-term allograft survival and donor specific unresponsiveness in the murine model: evidence for hematopoietic chimerism. Transplantation. 61: 997–1004
  • Jang, E., Cho, W. S., Cho, M. L., et al 2011. Foxp3+ regulatory T cells control humoral autoimmunity by suppressing the development of long-lived plasma cells. J. Immunol. 186: 1546–1553
  • Ellis, J. S., Hong, S. H., Zaghouani, H., Braley-Mullen, H. 2013. Reduced effectiveness of CD4 + Foxp3+ regulatory T cells in CD28-deficient NOD.H-2h4 mice leads to increased severity of spontaneous autoimmune thyroiditis. J. Immunol. 191: 4940–4949
  • Zhang, R., Borges, C. M., Fan, M. Y., et al 2015. Requirement for CD28 in effector regulatory T cell differentiation, CCR6 induction, and skin homing. J. Immunol. 195: 4154–4161
  • Puga, I., Cols, M., Barra, C.M., et al 2011. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 25 13: 170–180
  • Taylor, P. R., Roy, S., Leal, S. wM. Jr, et al 2014. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15: 143–151
  • Chung, Y., Chang, S. H., Martinez, G. J., et al 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 30: 576–587
  • Sutton, C., Brereton, C., Keogh, B., et al 2006. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203: 1685–1691
  • van Beelen, A. J., Zelinkova, Z., Taanman-Kueter, E. W., et al 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote Interleukin-17 production in human memory T cells. Immunity. 27: 660–669
  • Latz, E., Xiao, T. S., and Stutz, A. 2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13: 397–411

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.