512
Views
13
CrossRef citations to date
0
Altmetric
Review Article

B cell contribution of the CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus

&
Pages 37-41 | Received 09 Aug 2016, Accepted 04 Jan 2017, Published online: 06 Feb 2017

References

  • Lipsky, P. E. 2001. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat. Immunol. 2: 764–766
  • Bird, A. K., N. Meednu, and J. H. Anolik. 2015. New insights into B cell biology in systemic lupus erythematosus and Sjögren's syndrome. Curr. Opin. Rheumatol. 27: 461–467
  • Shlomchik, M. J., M. P. Madaio, D. Ni, et al. 1994. The role of B cells in lpr/lpr-induced autoimmunity. J. Exp. Med. 180: 1295–1306
  • Vincent, F. B., E. F. Morand, P. Schneider, et al. 2014. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 10: 365–373
  • Duxbury, B., C. Combescure, and C. Chizzolini. 2013. Rituximab in systemic lupus erythematosus: an updated systematic review and meta-analysis. Lupus. 22: 1489–1503
  • Beckwith, H., and L. Lightstone. 2014. Rituximab in systemic lupus erythematosus and lupus nephritis. Nephron. Clin. Pract. 128: 250–254
  • Ehrenstein, M. R., and C. Wing. 2016. The BAFFling effects of rituximab in lupus: danger ahead? Nat. Rev. Rheumatol. 12: 367–372
  • Lino, A. C., T. Dorner, A. Bar-Or, et al. 2016. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol. Rev. 269: 130–144
  • Mariño, E., and S. T. Grey. 2012. B cells as effectors and regulators of autoimmunity. Autoimmunity. 45: 377–387
  • Allman, D., and S. Pillai. 2008. Peripheral B cell subsets. Curr. Opin. Immunol. 20: 149–157
  • Sang, A., Y. Y. Zheng, and L. Morel. 2013. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 62: 329
  • Anolik, J. H. 2013. B cell biology: implications for treatment of systemic lupus erythematosus. Lupus. 22: 342–349
  • Liu, Z., and A. Davidson. 2012. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18: 871–882
  • Popi, A. F., I. M. Longo-Maugeri, and M. Mariano. 2016. An overview of B-1 cells as antigen-presenting cells. Front. Immunol. 7: 138
  • Malynn, B. A., D. T. Romeo, and H. H. Wortis. 1985. Antigen-specific B cells efficiently present low doses of antigen for induction of T cell proliferation. J. Immunol. 135: 980–988
  • Townsend, S. E., and C. C. Goodnow. 1998. Abortive proliferation of rare T cells induced by direct or indirect antigen presentation by rare B cells in vivo. J. Exp. Med. 187: 1611–1621
  • Rivera, A., C.-C. Chen, N. Ron, et al. 2001. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Intern. Immunol. 13: 1583–1593
  • Fuchs, E. J., and P. Matzinger. 1992. B cells turn off virgin but not memory T cells. Science. 258: 1156–1159
  • Barr, T. A., S. Brown, G. Ryan, et al. 2007. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 37: 3040–3053
  • Moore, C., D. Sauma, P. A. Reyes, et al. 2010. Dendritic cells and B cells cooperate in the generation of CD4(+)CD25(+)FOXP3(+) allogeneic T cells. Transplant. Proc. 42: 371–375
  • Pollard, K. M., D. M. Cauvi, C. B. Toomey, et al. 2013. Interferon-γ and systemic autoimmunity. Discov. Med. 16: 123–131
  • Koga, T., K. Ichinose, and G. C. Tsokos. 2016. T cells and IL-17 in lupus nephritis. Clin. Immunol. [Epub ahead of print]. doi:10.1016/j.clim.2016.04.010
  • Blanco, P., H. Ueno, and N. Schmitt. 2016. T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis. Eur. J. Immunol. 46: 281–290
  • Hackl, D., J. Loschko, T. Sparwasser, et al. 2011. Activation of dendritic cells via TLR7 reduces Foxp3 expression and suppressive function in induced Tregs. Eur. J. Immunol. 41: 1334–1343
  • Geginat, J., P. Larghi, M. Paroni, et al. 2016. The light and the dark sides of Interleukin-10 in immune-mediated diseases and cancer. Cytokine Growth Factor Rev. 30: 87–93
  • Candando, K. M., J. M. Lykken, and T. F. Tedder. 2014. B10 cell regulation of health and disease. Immunol. Rev. 259: 259–272
  • Blair, P. A., L. Y. Norena, F. Flores-Borja, et al. 2010. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 32: 129–140
  • Menon, M., P. A. Blair, D. A. Isenberg, et al. 2016. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity. 44: 683–697
  • Flores-Borja, F., A. Bosma, D. Ng, et al. 2013. CD19 + CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 5: 173ra23
  • Quan, C., J. ZhangBao, J. Lu, et al. 2015. The immune balance between memory and regulatory B cells in NMO and the changes of the balance after methylprednisolone or rituximab therapy. J. Neuroimmunol. 282: 45–53
  • Alexopoulos, H., A. Biba, and M. C. Dalakas. 2016. Anti-B-cell therapies in autoimmune neurological diseases: Rationale and efficacy trials. Neurotherapeutics. 13: 20–33
  • Teichmann, L. L., M. L. Ols, M. Kashgarian, et al. 2010. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity. 33: 967–978
  • Teichmann, L. L., D. Schenten, R. Medzhitov, et al. 2013. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity. 38: 528–540
  • Christensen, S. R., J. Shupe, K. Nickerson, et al. 2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 25: 417–428
  • Liarski, V. M., N. Kaverina, A. Chang, et al. 2014. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6: 230ra46
  • Davidson, A. 2016. What is damaging the kidney in lupus nephritis? Nat. Rev. Rheumatol. 12: 143–153
  • Domeier, P. P., S. B. Chodisetti, C. Soni, et al. 2016. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213: 715–732
  • Coutant, F., and P. Miossec. 2016. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat. Rev. Rheumatol. 12: 703–715
  • Iwata, S., and Y. Tanaka. 2016. B-cell subsets, signaling and their roles in secretion of autoantibodies. Lupus. 25: 850–856
  • Cappione, A. 3rd., J. H. Anolik, A. Pugh-Bernard, et al. 2005. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115: 3205–3216
  • Wang, J. H., J. S. New, S. Xie, et al. 2013. Extension of the germinal center stage of B cell development promotes autoantibodies in BXD2 mice. Arthritis. Rheum. 65: 2703–2712
  • Yin, Y., S. C. Choi, Z. Xu, et al. 2015. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7: 274ra18
  • Crotty, S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity. 41: 529–542
  • Berland, R., and H. H. Wortis. 2002. Origins and functions of B-1 cells with notes on the role of CD5. Ann. Rev. Immunol. 20: 253–300
  • Zimecki, M., and J. A. Kapp. 1994. Presentation of antigen by B cell subsets. II. The role of CD5 B cells in the presentation of antigen to antigen-specific T cells. Arch. Immunol. Ther. Exp. (Warsz.). 42: 349–353
  • Margry, B., W. H. Wieland, P. J. van Kooten, et al. 2013. Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur. J. Immunol. 43: 2317–2326
  • Zhong, X., W. Gao, N. Degauque, et al. 2007. Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur. J. Immunol. 37: 2400–2404
  • Wang, Y., and T. L. Rothstein. 2012. Induction of Th17 cell differentiation by B-1 cells. Front. Immunol. 3: 281
  • Wang, X., K. Ma, M. Chen, et al. 2016. IL-17A promotes pulmonary B-1a cell differentiation via induction of blimp-1 expression during influenza virus infection. PLoS Pathog. 12: e1005367
  • Duan, B., and L. Morel. 2006. Role of B-1a cells in autoimmunity. Autoimmun Rev. 5: 403–408
  • Griffin, D. O., and T. L. Rothstein. 2011. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J. Exp. Med. 208: 2591–2598
  • Morshed, S. R. M., K. Mannoor, R. C. Halder, et al. 2002. Tissue-specific expansion of NKT and CD5 + B cells at the onset of autoimmune disease in (NZB × NZW)F1 mice. Eur. J. Immunol. 32: 2551–2561
  • Ishikawa, S., and K. Matsushima. 2007. Aberrant B1 cell trafficking in a murine model for lupus. Front. Biosci. 12: 1790–1803
  • Mohan, C., L. Morel, P. Yang, et al. 1998. Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis. Rheum. 41: 1652–1662
  • Holodick, N. E., L. Zeumer, T. L. Rothstein, et al. 2016. Expansion of B-1a cells with germline heavy chain sequence in lupus mice. Front. Immunol. 7: 108
  • Zhong, X., S. Lau, C. Bai, et al. 2009. A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice. Arthritis. Rheum. 60: 3734–3743
  • Lee, R. A., C. Mao, H. Vo, et al. 2015. Fluorescence tagging and inducible depletion of PD-L2-expressing B-1 B cells in vivo. Ann. N. Y. Acad. Sci. 1362: 77–85
  • Xu, Z., C. M. Cuda, B. P. Croker, et al. 2011. The NZM2410-derived lupus susceptibility locus Sle2c1 increases TH17 polarization and induces nephritis in Fas-deficient mice. Arthritis. Rheum. 63: 764–774
  • Martin, F., A. M. Oliver, and J. F. Kearney. 2001. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 14: 617–629
  • Attanavanich, K., and J. F. Kearney. 2004. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 172: 803–811
  • Bankoti, R., K. Gupta, A. Levchenko, et al. 2012. Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol. 188: 3961–3971
  • Duan, B., B. P. Croker, and L. Morel. 2007. Lupus resistance is associated with marginal zone abnormalities in an NZM murine model. Lab. Invest. 87: 14–28
  • Duan, B., H. Niu, Z. Xu, et al. 2008. Intrafollicular location of marginal zone/CD1d(hi) B cells is associated with autoimmune pathology in a mouse model of lupus. Lab. Invest. 88: 1008–1019
  • Zhou, Z., H. Niu, Y. Y. Zheng, et al. 2011. Autoreactive marginal zone B cells enter the follicles and interact with CD4+ T cells in lupus-prone mice. BMC Immunol. 12: 7
  • Wang, J. H., J. Li, Q. Wu, et al. 2010. Marginal zone precursor B cells as cellular agents for type I IFN-promoted antigen transport in autoimmunity. J. Immunol. 184: 442–451
  • Wang, J. H., Q. Wu, P. Yang, et al. 2011. Type I interferon-dependent CD86(high) marginal zone precursor B cells are potent T cell costimulators in mice. Arthritis. Rheum. 63: 1054–1064
  • Li, H., Q. Wu, J. Li, et al. 2013. Cutting edge: defective follicular exclusion of apoptotic antigens due to marginal zone macrophage defects in autoimmune BXD2 mice. J. Immunol. 190: 4465–4469
  • Li, H., Y.-X. Fu, Q. Wu, et al. 2015. Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus. J. Clin. Invest. 125: 2877–2890
  • Comte, D., M. P. Karampetsou, and G. C. Tsokos. 2015. T cells as a therapeutic target in SLE. Lupus. 24: 351–363

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.