948
Views
67
CrossRef citations to date
0
Altmetric
Review Article

Spontaneous germinal centers and autoimmunity

, &
Pages 4-18 | Received 07 Oct 2016, Accepted 07 Jan 2017, Published online: 06 Feb 2017

References

  • Cyster, J. G. 2010. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11: 989–996
  • De Silva, N. S., and U. Klein. 2015. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15: 137–148
  • Rodda, L. B., O. Bannard, B. Ludewig, et al 2015. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J. Immunol. 195: 4781–4791
  • Gatto, D., and R. Brink. 2010. The germinal center reaction. J. Allergy Clin. Immunol. 126: 898–907. quiz 908–899
  • Detanico, T., J. B. St Clair, K. Aviszus, et al 2013. Somatic mutagenesis in autoimmunity. Autoimmunity. 46: 102–114
  • Schroeder, K., M. Herrmann, and T. H. Winkler. 2013. The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity. 46: 121–127
  • Schaerli, P., K. Willimann, A. B. Lang, et al 2000. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192: 1553–1562
  • Cyster, J. G., K. M. Ansel, K. Reif, et al 2000. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176: 181–193
  • Allen, C. D., K. M. Ansel, C. Low, et al 2004. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5: 943–952
  • Walsh, E. R., P. Pisitkun, E. Voynova, et al 2012. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc. Natl. Acad. Sci. U.S.A. 109: 16276–16281
  • Yusuf, I., R. Kageyama, L. Monticelli, et al 2010. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185: 190–202
  • Wang, H., J. Geng, X. Wen, et al 2014. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat. Immunol. 15: 667–675
  • Wang, C. J., F. Heuts, V. Ovcinnikovs, et al 2015. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl. Acad. Sci. U.S.A. 112: 524–529
  • Goenka, R., A. H. Matthews, B. Zhang, et al 2014. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J. Exp. Med. 211: 45–56
  • Hsu, H. C., P. Yang, J. Wang, et al 2008. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9: 166–175
  • Zotos, D., J. M. Coquet, Y. Zhang, et al 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207: 365–378
  • Ding, Y., J. Li, P. Yang, et al 2014. Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice. Arthritis Rheumatol. 66: 2601–2612
  • Domeier, P. P., S. B. Chodisetti, C. Soni, et al 2016. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213: 715–732
  • Lee, S. K., D. G. Silva, J. L. Martin, et al 2012. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity. 37: 880–892
  • Jackson, S. W., H. M. Jacobs, T. Arkatkar, et al 2016. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213: 733–750
  • Tahir, S., Y. Fukushima, K. Sakamoto, et al 2015. A CD153 + CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J. Immunol. 194: 5725–5735
  • Linterman, M. A., W. Pierson, S. K. Lee, et al 2011. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17: 975–982
  • Vinuesa, C. G., I. Sanz, and M. C. Cook. 2009. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9: 845–857
  • Luzina, I. G., S. P. Atamas, C. E. Storrer, et al 2001. Spontaneous formation of germinal centers in autoimmune mice. J. Leukoc. Biol. 70: 578–584
  • Wong, E. B., T. N. Khan, C. Mohan, and Z. S. Rahman. 2012. The lupus-prone NZM2410/NZW strain-derived Sle1b sublocus alters the germinal center checkpoint in female mice in a B cell-intrinsic manner. J. Immunol. 189: 5667–5681
  • Giese, T., and W. F. Davidson. 1994. Chronic treatment of C3H-lpr/lpr and C3H-gld/gld mice with anti-CD8 monoclonal antibody prevents the accumulation of double negative T cells but not autoantibody production. J. Immunol. 152: 2000–2010
  • Soni, C., E. B. Wong, P. P. Domeier, et al 2014. B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J. Immunol. 193: 4400–4414
  • Soni, C., P. P. Domeier, E. B. Wong, et al 2015. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity. J. Autoimmun. 63: 31–46
  • Ermak, T. H., H. J. Steger, and D. Wofsy. 1989. Treatment of murine lupus with monoclonal antibody to L3T4. II. Effects on immunohistopathology of thymus, spleen, and lymph node. Lab. Invest. 61: 447–456
  • Mackay, F., S. A. Woodcock, P. Lawton, et al 1999. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190: 1697–1710
  • Bogdani, M. 2016. Thinking outside the cell: a key role for hyaluronan in the pathogenesis of human type 1 diabetes. Diabetes. 65: 2105–2114
  • Peters, A. L., L. L. Stunz, D. K. Meyerholz, et al 2010. Latent membrane protein 1, the EBV-encoded oncogenic mimic of CD40, accelerates autoimmunity in B6.Sle1 mice. J. Immunol. 185: 4053–4062
  • Tugnet, N., P. Rylance, D. Roden, et al 2013. Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? Open Rheumatol. J. 7: 13–21
  • Perl, A., E. Colombo, H. Dai, et al 1995. Antibody reactivity to the HRES-1 endogenous retroviral element identifies a subset of patients with systemic lupus erythematosus and overlap syndromes. Correlation with antinuclear antibodies and HLA class II alleles. Arthritis Rheum. 38: 1660–1671
  • Pitzalis, C., G. W. Jones, M. Bombardieri, and S. A. Jones. 2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14: 447–462
  • Cañete, J. D., R. Celis, C. Moll, et al 2009. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor alpha therapy in rheumatoid arthritis. Ann. Rheum. Dis. 68: 751–756
  • Humby, F., M. Bombardieri, A. Manzo, et al 2009. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6: e1
  • Perros, F., P. Dorfmüller, D. Montani, et al 2012. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 185: 311–321
  • Hill, M. E., H. Shiono, J. Newsom-Davis, and N. Willcox. 2008. The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J. Neuroimmunol. 201–202: 50–56
  • Cantaert, T., J. Kolln, T. Timmer, et al 2008. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181: 785–794
  • Kim, S. J., Y. R. Zou, J. Goldstein, et al 2011. Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med. 208: 2193–2199
  • Tiller, T., J. Kofer, C. Kreschel, et al 2010. Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. J. Exp. Med. 207: 2767–2778
  • Wellmann, U., M. Letz, M. Herrmann, et al 2005. The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl. Acad. Sci. U.S.A. 102: 9258–9263
  • Diamond, B., J. B. Katz, E. Paul, et al 1992. The role of somatic mutation in the pathogenic anti-DNA response. Annu. Rev. Immunol. 10: 731–757
  • Cappione, A., J. H. Anolik, A. Pugh-Bernard, et al 2005. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115: 3205–3216
  • Arce, E., D. G. Jackson, M. A. Gill, et al 2001. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J. Immunol. 167: 2361–2369
  • Levinson, A. I., and L. M. Wheatley. 1996. The thymus and the pathogenesis of myasthenia gravis. Clin. Immunol. Immunopathol. 78: 1–5
  • Song, Y. W., and E. H. Kang. 2010. Autoantibodies in rheumatoid arthritis: rheumatoid factors and anticitrullinated protein antibodies. QJM. 103: 139–146
  • Nell-Duxneuner, V., K. Machold, T. Stamm, et al 2010. Autoantibody profiling in patients with very early rheumatoid arthritis: a follow-up study. Ann. Rheum. Dis. 69: 169–174
  • Jones, V., P. C. Taylor, R. K. Jacoby, and T. B. Wallington. 1984. Synovial synthesis of rheumatoid factors and immune complex constituents in early arthritis. Ann. Rheum. Dis. 43: 235–239
  • Schröder, A. E., A. Greiner, C. Seyfert, and C. Berek. 1996. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 93: 221–225
  • Weyand, C. M., and J. J. Goronzy. 2003. Ectopic germinal center formation in rheumatoid synovitis. Ann. N. Y. Acad. Sci. 987: 140–149
  • Hou, L., K. E. Block, and H. Huang. 2014. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis. PLoS One. 9: e104762
  • Victoratos, P., and G. Kollias. 2009. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity. 30: 130–142
  • McCarthy, D. P., M. H. Richards, and S. D. Miller. 2012. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease. Methods Mol. Biol. 900: 381–401
  • Dang, A. K., Y. Tesfagiorgis, R. W. Jain, et al 2015. Meningeal infiltration of the spinal cord by non-classically activated B cells is associated with chronic disease course in a spontaneous B cell-dependent model of CNS autoimmune disease. Front. Immunol. 6: 470
  • Krammer, P. H. 2000. CD95's deadly mission in the immune system. Nature. 407: 789–795
  • Martin, D. A., L. Zheng, R. M. Siegel, et al 1999. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl. Acad. Sci. U. S. A. 96: 4552–4557
  • Takahashi, T., M. Tanaka, C. I. Brannan, et al 1994. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 76: 969–976
  • Watanabe-Fukunaga, R., C. I. Brannan, N. G. Copeland, et al 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 356: 314–317
  • Guo, Q., J. Zhang, J. Li, et al 2013. Forced miR-146a expression causes autoimmune lymphoproliferative syndrome in mice via downregulation of Fas in germinal center B cells. Blood. 121: 4875–4883
  • Risselada, A. P., M. F. Looije, A. A. Kruize, et al 2013. The role of ectopic germinal centers in the immunopathology of primary Sjögren's syndrome: a systematic review. Semin. Arthritis Rheum. 42: 368–376
  • Reksten, T. R., M. V. Jonsson, E. A. Szyszko, et al 2009. Cytokine and autoantibody profiling related to histopathological features in primary Sjogren's syndrome. Rheumatology (Oxford). 48: 1102–1106
  • Le Pottier, L., V. Devauchelle, A. Fautrel, et al 2009. Ectopic germinal centers are rare in Sjogren's syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 182: 3540–3547
  • Salomonsson, S., M. V. Jonsson, K. Skarstein, et al 2003. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren's syndrome. Arthritis Rheum. 48: 3187–3201
  • Bombardieri, M., F. Barone, F. Humby, et al 2007. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren's syndrome. J. Immunol. 179: 4929–4938
  • Szodoray, P., and R. Jonsson. 2005. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjögren's syndrome. Scand. J. Immunol. 62: 421–428
  • Karnell, J. L., T. I. Mahmoud, R. Herbst, and R. Ettinger. 2014. Discerning the kinetics of autoimmune manifestations in a model of Sjögren's syndrome. Mol. Immunol. 62: 277–282
  • Barone, F., M. Bombardieri, A. Manzo, et al 2005. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. Arthritis Rheum. 52: 1773–1784
  • Hansen, A., K. Reiter, T. Ziprian, et al 2005. Dysregulation of chemokine receptor expression and function by B cells of patients with primary Sjögren's syndrome. Arthritis Rheum. 52: 2109–2119
  • Astorri, E., M. Bombardieri, S. Gabba, et al 2010. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J. Immunol. 185: 3359–3368
  • Lesage, S., S. B. Hartley, S. Akkaraju, et al 2002. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J. Exp. Med. 196: 1175–1188
  • Wan, X., J. W. Thomas, and E. R. Unanue. 2016. Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. J. Exp. Med. 213: 967–978
  • Suurmond, J., J. Calise, S. Malkiel, and B. Diamond. 2016. DNA-reactive B cells in lupus. Curr. Opin. Immunol. 43: 1–7
  • Becker-Herman, S., A. Meyer-Bahlburg, M. A. Schwartz, et al 2011. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med. 208: 2033–2042
  • Rawlings, D. J., and O. N. Witte. 1994. Bruton's tyrosine kinase is a key regulator in B-cell development. Immunol. Rev. 138: 105–119
  • Casola, S., K. L. Otipoby, M. Alimzhanov, et al 2004. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5: 317–327
  • Vuyyuru, R., C. Mohan, T. Manser, and Z. S. Rahman. 2009. The lupus susceptibility locus Sle1 breaches peripheral B cell tolerance at the antibody-forming cell and germinal center checkpoints. J. Immunol. 183: 5716–5727
  • Berland, R., L. Fernandez, E. Kari, et al 2006. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity. 25: 429–440
  • Gaudin, E., Y. Hao, M. M. Rosado, et al 2004. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med. 199: 843–853
  • Petro, J. B., S. M. Rahman, D. W. Ballard, and W. N. Khan. 2000. Bruton's tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J. Exp. Med. 191: 1745–1754
  • Maas, A., and R. W. Hendriks. 2001. Role of Bruton's tyrosine kinase in B cell development. Dev. Immunol. 8: 171–181
  • Conley, M. E. 1985. B cells in patients with X-linked agammaglobulinemia. J. Immunol. 134: 3070–3074
  • Kil, L. P., M. J. de Bruijn, M. van Nimwegen, et al 2012. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood. 119: 3744–3756
  • Corneth, O. B., M. J. de Bruijn, J. Rip, et al 2016. Enhanced expression of Bruton's tyrosine kinase in B cells drives systemic autoimmunity by disrupting T cell homeostasis. J. Immunol. 197: 58–67
  • Gennery, A. R. 2016. The sting of WASP deficiency: autoimmunity exposed. Blood. 127: 173–175
  • Dupuis-Girod, S., J. Medioni, E. Haddad, et al 2003. Autoimmunity in Wiskott–Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 111: e622–e627
  • Recher, M., S. O. Burns, M. A. de la Fuente, et al 2012. B cell-intrinsic deficiency of the Wiskott–Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood. 119: 2819–2828
  • Meyer-Bahlburg, A., S. Becker-Herman, S. Humblet-Baron, et al 2008. Wiskott–Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood. 112: 4158–4169
  • Astrakhan, A., B. D. Sather, B. Y. Ryu, et al 2012. Ubiquitous high-level gene expression in hematopoietic lineages provides effective lentiviral gene therapy of murine Wiskott–Aldrich syndrome. Blood. 119: 4395–4407
  • Koopman, G., R. M. Keehnen, E. Lindhout, et al 1997. Germinal center B cells rescued from apoptosis by CD40 ligation or attachment to follicular dendritic cells, but not by engagement of surface immunoglobulin or adhesion receptors, become resistant to CD95-induced apoptosis. Eur. J. Immunol. 27: 1–7
  • Foy, T. M., J. D. Laman, J. A. Ledbetter, et al 1994. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180: 157–163
  • Liu, Y. J., D. E. Joshua, G. T. Williams, et al 1989. Mechanism of antigen-driven selection in germinal centres. Nature. 342: 929–931
  • Fang, W., K. A. Nath, M. F. Mackey, et al 1997. CD40 inhibits B cell apoptosis by upregulating bcl-xL expression and blocking oxidant accumulation. Am. J. Physiol. 272: C950–C956
  • Lane, P., A. Traunecker, S. Hubele, et al 1992. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur. J. Immunol. 22: 2573–2578
  • Fuleihan, R., N. Ramesh, and R. S. Geha. 1993. Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr. Opin. Immunol. 5: 963–967
  • Rousset, F., E. Garcia, and J. Banchereau. 1991. Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J. Exp. Med. 173: 705–710
  • Grabstein, K. H., C. R. Maliszewski, K. Shanebeck, et al 1993. The regulation of T cell-dependent antibody formation in vitro by CD40 ligand and IL-2. J. Immunol. 150: 3141–3147
  • Xu, J., T. M. Foy, J. D. Laman, et al 1994. Mice deficient for the CD40 ligand. Immunity. 1: 423–431
  • DiSanto, J. P., J. Y. Bonnefoy, J. F. Gauchat, et al 1993. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 361: 541–543
  • Kawabe, T., T. Naka, K. Yoshida, et al 1994. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1: 167–178
  • Castigli, E., F. W. Alt, L. Davidson, et al 1994. CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc. Natl. Acad. Sci. U.S.A. 91: 12135–12139
  • Renshaw, B. R., W. C. Fanslow, R. J. Armitage, et al 1994. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180: 1889–1900
  • William, J., C. Euler, S. Christensen, and M. J. Shlomchik. 2002. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science. 297: 2066–2070
  • Weller, S., A. Faili, C. Garcia, et al 2001. CD40–CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl. Acad. Sci. U. S. A. 98: 1166–1170
  • Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23: 515–548
  • Shahinian, A., K. Pfeffer, K. P. Lee, et al 1993. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 261: 609–612
  • Borriello, F., M. P. Sethna, S. D. Boyd, et al 1997. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity. 6: 303–313
  • Chevrier, S., C. Genton, B. Malissen, et al 2012. Dominant role of CD80-CD86 over CD40 and ICOSL in the massive polyclonal B cell activation mediated by LAT(Y136F) CD4(+) T cells. Front. Immunol. 3: 27
  • Ferguson, S. E., S. Han, G. Kelsoe, and C. B. Thompson. 1996. CD28 is required for germinal center formation. J. Immunol. 156: 4576–4581
  • Rau, F. C., J. Dieter, Z. Luo, et al 2009. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. J. Immunol. 183: 7661–7671
  • MacPhee, I. A., D. R. Turner, H. Yagita, and D. B. Oliveira. 2001. CD80(B7.1) and CD86(B7.2) do not have distinct roles in setting the Th1/Th2 balance in autoimmunity in rats. Scand. J. Immunol. 54: 486–494
  • Miller, S. D., C. L. Vanderlugt, D. J. Lenschow, et al 1995. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity. 3: 739–745
  • Wandstrat, A. E., C. Nguyen, N. Limaye, et al 2004. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity. 21: 769–780
  • Wong, E. B., C. Soni, A. Y. Chan, et al 2015. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J. Immunol. 194: 4130–4143
  • Kumar, K. R., L. Li, M. Yan, et al 2006. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science. 312: 1665–1669
  • Keszei, M., C. Detre, S. T. Rietdijk, et al 2011. A novel isoform of the Ly108 gene ameliorates murine lupus. J. Exp. Med. 208: 811–822
  • Keszei, M., Y. E. Latchman, V. K. Vanguri, et al 2011. Auto-antibody production and glomerulonephritis in congenic Slamf1−/− and Slamf2−/− [B6.129] but not in Slamf1−/− and Slamf2−/− [BALB/c.129] mice. Int. Immunol. 23: 149–158
  • Koh, A. E., S. W. Njoroge, M. Feliu, et al 2011. The SLAM family member CD48 (Slamf2) protects lupus-prone mice from autoimmune nephritis. J. Autoimmun. 37: 48–57
  • de Salort, J., M. Cuenca, C. Terhorst, et al 2013. Ly9 (CD229) cell-surface receptor is crucial for the development of spontaneous autoantibody production to nuclear antigens. Front. Immunol. 4: 225
  • Suzuki, A., R. Yamada, Y. Kochi, et al 2008. Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat. Genet. 40: 1224–1229
  • Cunninghame Graham, D. S., T. J. Vyse, P. R. Fortin, et al 2008. Association of LY9 in UK and Canadian SLE families. Genes Immun. 9: 93–102
  • Chatterjee, M., K. Kis-Toth, T. H. Thai, et al 2011. SLAMF6-driven co-stimulation of human peripheral T cells is defective in SLE T cells. Autoimmunity. 44: 211–218
  • Leadbetter, E. A., I. R. Rifkin, A. M. Hohlbaum, et al 2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 416: 603–607
  • Viglianti, G. A., C. M. Lau, T. M. Hanley, et al 2003. Activation of autoreactive B cells by CpG dsDNA. Immunity. 19: 837–847
  • Lau, C. M., C. Broughton, A. S. Tabor, et al 2005. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202: 1171–1177
  • Avalos, A. M., L. Busconi, and A. Marshak-Rothstein. 2010. Regulation of autoreactive B cell responses to endogenous TLR ligands. Autoimmunity. 43: 76–83
  • Busconi, L., J. W. Bauer, J. R. Tumang, et al 2007. Functional outcome of B cell activation by chromatin immune complex engagement of the B cell receptor and TLR9. J. Immunol. 179: 7397–7405
  • Christensen, S. R., J. Shupe, K. Nickerson, et al 2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 25: 417–428
  • Wu, X., and S. L. Peng. 2006. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum. 54: 336–342
  • Christensen, S. R., M. Kashgarian, L. Alexopoulou, et al 2005. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202: 321–331
  • Lartigue, A., P. Courville, I. Auquit, et al 2006. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J. Immunol. 177: 1349–1354
  • Ehlers, M., H. Fukuyama, T. L. McGaha, et al 2006. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med. 203: 553–561
  • Summers, S. A., A. Hoi, O. M. Steinmetz, et al 2010. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J. Autoimmun. 35: 291–298
  • Santiago-Raber, M. L., I. Dunand-Sauthier, T. Wu, et al 2010. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J. Autoimmun. 34: 339–348
  • Jackson, S. W., N. E. Scharping, N. S. Kolhatkar, et al 2014. Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J. Immunol. 192: 4525–4532
  • Pisitkun, P., J. A. Deane, M. J. Difilippantonio, et al 2006. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 312: 1669–1672
  • Subramanian, S., K. Tus, Q. Z. Li, et al 2006. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl. Acad. Sci. U.S.A. 103: 9970–9975
  • Deane, J. A., P. Pisitkun, R. S. Barrett, et al 2007. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 27: 801–810
  • Fairhurst, A. M., S. H. Hwang, A. Wang, et al 2008. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38: 1971–1978
  • Hwang, S. H., H. Lee, M. Yamamoto, et al 2012. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J. Immunol. 189: 5786–5796
  • Fukui, R., S. Saitoh, F. Matsumoto, et al 2009. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA-but against RNA-sensing. J. Exp. Med. 206: 1339–1350
  • Nickerson, K. M., S. R. Christensen, J. Shupe, et al 2010. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184: 1840–1848
  • Desnues, B., A. B. Macedo, A. Roussel-Queval, et al 2014. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc. Natl. Acad. Sci. U. S. A. 111: 1497–1502
  • Nündel, K., N. M. Green, A. L. Shaffer, et al 2015. Cell-intrinsic expression of TLR9 in autoreactive B cells constrains BCR/TLR7-dependent responses. J. Immunol. 194: 2504–2512
  • Hardy, M. P., C. M. Owczarek, S. Trajanovska, et al 2001. The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties. Blood. 97: 473–482
  • Piehler, J., C. Thomas, K. C. Garcia, and G. Schreiber. 2012. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250: 317–334
  • Kiefer, K., M. A. Oropallo, M. P. Cancro, and A. Marshak-Rothstein. 2012. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 90: 498–504
  • Wilson, L. E., D. Widman, S. H. Dikman, and P. D. Gorevic. 2002. Autoimmune disease complicating antiviral therapy for hepatitis C virus infection. Semin. Arthritis Rheum. 32: 163–173
  • Munroe, M. E., R. Lu, Y. D. Zhao, et al 2016. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75: 2014–2021
  • Bennett, L., A. K. Palucka, E. Arce, et al 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197: 711–723
  • Sisirak, V., D. Ganguly, K. L. Lewis, et al 2014. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211: 1969–1976
  • Rowland, S. L., J. M. Riggs, S. Gilfillan, et al 2014. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211: 1977–1991
  • Heesters, B. A., A. Das, P. Chatterjee, and M. C. Carroll. 2014. Do follicular dendritic cells regulate lupus-specific B cells? Mol. Immunol. 62: 283–288
  • Mathian, A., M. Gallegos, V. Pascual, et al 2011. Interferon-α induces unabated production of short-lived plasma cells in pre-autoimmune lupus-prone (NZB × NZW)F1 mice but not in BALB/c mice. Eur. J. Immunol. 41: 863–872
  • Braun, D., I. Caramalho, and J. Demengeot. 2002. IFN-alpha/beta enhances BCR-dependent B cell responses. Int. Immunol. 14: 411–419
  • Gujer, C., K. J. Sandgren, I. Douagi, et al 2011. IFN-α produced by human plasmacytoid dendritic cells enhances T cell-dependent naïve B cell differentiation. J. Leukoc. Biol. 89: 811–821
  • Badr, G., H. Saad, H. Waly, et al 2010. Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL). Cell. Immunol. 263: 31–40
  • Moisini, I., W. Huang, R. Bethunaickan, et al 2012. The Yaa locus and IFN-α fine-tune germinal center B cell selection in murine systemic lupus erythematosus. J. Immunol. 189: 4305–4312
  • Swanson, C. L., T. J. Wilson, P. Strauch, et al 2010. Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med. 207: 1485–1500
  • Wang, J. H., J. Li, Q. Wu, et al 2010. Marginal zone precursor B cells as cellular agents for type I IFN-promoted antigen transport in autoimmunity. J. Immunol. 184: 442–451
  • Lauwerys, B. R., E. Hachulla, F. Spertini, et al 2013. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65: 447–456
  • Pollard, K. M., D. M. Cauvi, C. B. Toomey, et al 2013. Interferon-γ and systemic autoimmunity. Discov. Med. 16: 123–131
  • Csiszár, A., G. Nagy, P. Gergely, et al 2000. Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 122: 464–470
  • Harigai, M., M. Kawamoto, M. Hara, et al 2008. Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J. Immunol. 181: 2211–2219
  • Panitch, H. S., R. L. Hirsch, A. S. Haley, and K. P. Johnson. 1987. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1: 893–895
  • Jacob, C. O., P. H. van der Meide, and H. O. McDevitt. 1987. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J. Exp. Med. 166: 798–803
  • Ozmen, L., D. Roman, M. Fountoulakis, et al 1995. Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur. J. Immunol. 25: 6–12
  • Balomenos, D., R. Rumold, and A. N. Theofilopoulos. 1998. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J. Clin. Invest. 101: 364–371
  • Haas, C., B. Ryffel, and M. Le Hir. 1998. IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW)F1 mice. J. Immunol. 160: 3713–3718
  • Schwarting, A., T. Wada, K. Kinoshita, et al 1998. IFN-gamma receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Fas(lpr) mice. J. Immunol. 161: 494–503
  • Lawson, B. R., G. J. Prud'homme, Y. Chang, et al 2000. Treatment of murine lupus with cDNA encoding IFN-gammaR/Fc. J. Clin. Invest. 106: 207–215
  • Batten, M., J. Groom, T. G. Cachero, et al 2000. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192: 1453–1466
  • Balázs, M., F. Martin, T. Zhou, and J. Kearney. 2002. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 17: 341–352
  • Schneider, P., F. MacKay, V. Steiner, et al 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189: 1747–1756
  • Yan, M., S. A. Marsters, I. S. Grewal, et al 2000. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat. Immunol. 1: 37–41
  • Vora, K. A., L. C. Wang, S. P. Rao, et al 2003. Cutting edge: germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J. Immunol. 171: 547–551
  • Rahman, Z. S., S. P. Rao, S. L. Kalled, and T. Manser. 2003. Normal induction but attenuated progression of germinal center responses in BAFF and BAFF-R signaling-deficient mice. J. Exp. Med. 198: 1157–1169
  • Schiemann, B., J. L. Gommerman, K. Vora, et al 2001. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 293: 2111–2114
  • Ramanujam, M., X. Wang, W. Huang, et al 2004. Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J. Immunol. 173: 3524–3534
  • Bessa, J., M. Kopf, and M. F. Bachmann. 2010. Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. J. Immunol. 184: 4615–4619
  • Linterman, M. A., L. Beaton, D. Yu, et al 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207: 353–363
  • Nurieva, R. I., Y. Chung, D. Hwang, et al 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 29: 138–149
  • Vogelzang, A., H. M. McGuire, D. Yu, et al 2008. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity. 29: 127–137
  • Fornek, J. L., L. T. Tygrett, T. J. Waldschmidt, et al 2006. Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood. 107: 1085–1091
  • Rankin, A. L., H. Guay, D. Herber, et al 2012. IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Fas(lpr/lpr)/J mice. J. Immunol. 188: 1656–1667
  • Ding, B. B., E. Bi, H. Chen, et al 2013. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J. Immunol. 190: 1827–1836
  • McPhee, C. G., J. A. Bubier, T. J. Sproule, et al 2013. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J. Immunol. 191: 4581–4588
  • Nohra, R., A. D. Beyeen, J. P. Guo, et al 2010. RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun. 11: 279–293
  • Webb, R., J. T. Merrill, J. A. Kelly, et al 2009. A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum. 60: 2402–2407
  • Sawalha, A. H., K. M. Kaufman, J. A. Kelly, et al 2008. Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann. Rheum. Dis. 67: 458–461
  • Liu, R., Q. Wu, D. Su, et al 2012. A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis. Arthritis Res. Ther. 14: R255
  • Mountz, J. D., J. H. Wang, S. Xie, and H. C. Hsu. 2011. Cytokine regulation of B-cell migratory behavior favors formation of germinal centers in autoimmune disease. Discov. Med. 11: 76–85
  • Hwang, I. Y., K. S. Hwang, C. Park, et al 2013. Rgs13 constrains early B cell responses and limits germinal center sizes. PLoS One. 8: e60139
  • Hwang, I. Y., C. Park, K. Harrison, et al 2015. An essential role for RGS protein/Gαi2 interactions in B lymphocyte-directed cell migration and trafficking. J. Immunol. 194: 2128–2139
  • Estes, J. D., T. C. Thacker, D. L. Hampton, et al 2004. Follicular dendritic cell regulation of CXCR4-mediated germinal center CD4 T cell migration. J. Immunol. 173: 6169–6178
  • Moratz, C., J. R. Hayman, H. Gu, and J. H. Kehrl. 2004. Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1−/− mice. Mol. Cell. Biol. 24: 5767–5775
  • Shi, G. X., K. Harrison, G. L. Wilson, et al 2002. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol. 169: 2507–2515
  • Boularan, C., and J. H. Kehrl. 2014. Implications of non-canonical G-protein signaling for the immune system. Cell. Signal. 26: 1269–1282
  • Ding, Y., J. Li, Q. Wu, et al 2013. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J. Immunol. 191: 1614–1624
  • Xie, S., J. Li, J. H. Wang, et al 2010. IL-17 activates the canonical NF-kappaB signaling pathway in autoimmune B cells of BXD2 mice to upregulate the expression of regulators of G-protein signaling 16. J. Immunol. 184: 2289–2296
  • Wichner, K., D. Stauss, B. Kampfrath, et al 2016. Dysregulated development of IL-17- and IL-21-expressing follicular helper T cells and increased germinal center formation in the absence of RORγt. FASEB J. 30: 761–774
  • Rahman, Z. S. 2011. Impaired clearance of apoptotic cells in germinal centers: implications for loss of B cell tolerance and induction of autoimmunity. Immunol. Res. 51: 125–133
  • Wakeland, E. K., K. Liu, R. R. Graham, and T. W. Behrens. 2001. Delineating the genetic basis of systemic lupus erythematosus. Immunity. 15: 397–408
  • Khan, T. N., E. B. Wong, C. Soni, and Z. S. Rahman. 2013. Prolonged apoptotic cell accumulation in germinal centers of Mer-deficient mice causes elevated B cell and CD4+ Th cell responses leading to autoantibody production. J. Immunol. 190: 1433–1446
  • Rahman, Z. S., W. H. Shao, T. N. Khan, et al 2010. Impaired apoptotic cell clearance in the germinal center by Mer-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J. Immunol. 185: 5859–5868
  • Hanayama, R., M. Tanaka, K. Miyasaka, et al 2004. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science. 304: 1147–1150
  • Rothlin, C. V., S. Ghosh, E. I. Zuniga, et al 2007. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 131: 1124–1136
  • Kranich, J., N. J. Krautler, E. Heinen, et al 2008. Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J. Exp. Med. 205: 1293–1302
  • Hu, C. Y., C. S. Wu, H. F. Tsai, et al 2009. Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus. 18: 676–681
  • Herrmann, M., R. E. Voll, O. M. Zoller, et al 1998. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41: 1241–1250
  • Baumann, I., W. Kolowos, R. E. Voll, et al 2002. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46: 191–201
  • Nimmerjahn, F., and J. V. Ravetch. 2008. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8: 34–47
  • Yu, X., and A. H. Lazarus. 2016. Targeting FcγRs to treat antibody-dependent autoimmunity. Autoimmun. Rev. 15: 510–512
  • Ben Mkaddem, S., G. Hayem, F. Jönsson, et al 2014. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. J. Clin. Invest. 124: 3945–3959
  • Clavel, C., L. Nogueira, L. Laurent, et al 2008. Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 58: 678–688
  • Kyogoku, C., H. M. Dijstelbloem, N. Tsuchiya, et al 2002. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 46: 1242–1254
  • Xu, L., G. Li, J. Wang, et al 2014. Through an ITIM-independent mechanism the FcγRIIB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19. J. Immunol. 192: 5179–5191
  • Nimmerjahn, F., and J. V. Ravetch. 2011. FcγRs in health and disease. Curr. Top. Microbiol. Immunol. 350: 105–125
  • Willcocks, L. C., E. J. Carr, H. A. Niederer, et al 2010. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl. Acad. Sci. U. S. A. 107: 7881–7885
  • Li, X., J. Wu, R. H. Carter, et al 2003. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum. 48: 3242–3252
  • Clatworthy, M. R., L. Willcocks, B. Urban, et al 2007. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc. Natl. Acad. Sci. U. S. A. 104: 7169–7174
  • Siriboonrit, U., N. Tsuchiya, M. Sirikong, et al 2003. Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens. 61: 374–383
  • Chen, J. Y., C. M. Wang, J. M. Wu, et al 2006. Association of rheumatoid factor production with FcgammaRIIIa polymorphism in Taiwanese rheumatoid arthritis. Clin. Exp. Immunol. 144: 10–16
  • Smith, K. G., and M. R. Clatworthy. 2010. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10: 328–343
  • Khoury, S. J., L. Gallon, W. Chen, et al 1995. Mechanisms of acquired thymic tolerance in experimental autoimmune encephalomyelitis: thymic dendritic-enriched cells induce specific peripheral T cell unresponsiveness in vivo. J. Exp. Med. 182: 357–366
  • Saijo, K., C. Schmedt, I. H. Su, et al 2003. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat. Immunol. 4: 274–279
  • Ohashi, P. S., and A. L. DeFranco. 2002. Making and breaking tolerance. Curr. Opin. Immunol. 14: 744–759
  • Lamagna, C., P. Scapini, J. A. van Ziffle, et al 2013. Hyperactivated MyD88 signaling in dendritic cells, through specific deletion of Lyn kinase, causes severe autoimmunity and inflammation. Proc. Natl. Acad. Sci. U. S. A. 110: E3311–E3320
  • Gross, A. J., I. Proekt, and A. L. DeFranco. 2011. Elevated BCR signaling and decreased survival of Lyn-deficient transitional and follicular B cells. Eur. J. Immunol. 41: 3645–3655
  • Silver, K. L., T. L. Crockford, T. Bouriez-Jones, et al 2007. MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur. J. Immunol. 37: 2734–2743
  • Hua, Z., A. J. Gross, C. Lamagna, et al 2014. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J. Immunol. 192: 875–885
  • Levy, E., J. Ambrus, L. Kahl, et al 1992. T lymphocyte expression of complement receptor 2 (CR2/CD21): a role in adhesive cell-cell interactions and dysregulation in a patient with systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 90: 235–244
  • Wilson, J. G., E. E. Murphy, W. W. Wong, et al 1986. Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J. Exp. Med. 164: 50–59
  • Douglas, K. B., D. C. Windels, J. Zhao, et al 2009. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun. 10: 457–469
  • Fang, Y., C. Xu, Y. X. Fu, et al 1998. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160: 5273–5279
  • Iida, K., L. Nadler, and V. Nussenzweig. 1983. Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody. J. Exp. Med. 158: 1021–1033
  • Weis, J. J., T. F. Tedder, and D. T. Fearon. 1984. Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 81: 881–885
  • Nemerow, G. R., R. A. Houghten, M. D. Moore, and N. R. Cooper. 1989. Identification of an epitope in the major envelope protein of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell. 56: 369–377
  • Aubry, J. P., S. Pochon, P. Graber, et al 1992. CD21 is a ligand for CD23 and regulates IgE production. Nature. 358: 505–507
  • Aubry, J. P., S. Pochon, J. F. Gauchat, et al 1994. CD23 interacts with a new functional extracytoplasmic domain involving N-linked oligosaccharides on CD21. J. Immunol. 152: 5806–5813
  • Delcayre, A. X., F. Salas, S. Mathur, et al 1991. Epstein Barr virus/complement C3d receptor is an interferon alpha receptor. EMBO J. 10: 919–926
  • Holers, V. M. 2005. Complement receptors and the shaping of the natural antibody repertoire. Springer Semin. Immunopathol. 26: 405–423
  • Bonnefoy, J. Y., S. Henchoz, D. Hardie, et al 1993. A subset of anti-CD21 antibodies promote the rescue of germinal center B cells from apoptosis. Eur. J. Immunol. 23: 969–972
  • Grosjean, I., A. Lachaux, C. Bella, et al 1994. CD23/CD21 interaction is required for presentation of soluble protein antigen by lymphoblastoid B cell lines to specific CD4+ T cell clones. Eur. J. Immunol. 24: 2982–2986
  • Prodeus, A. P., S. Goerg, L. M. Shen, et al 1998. A critical role for complement in maintenance of self-tolerance. Immunity. 9: 721–731
  • Wu, X., N. Jiang, C. Deppong, et al 2002. A role for the Cr2 gene in modifying autoantibody production in systemic lupus erythematosus. J. Immunol. 169: 1587–1592
  • Boackle, S. A., K. K. Culhane, J. M. Brown, et al 2004. CR1/CR2 deficiency alters IgG3 autoantibody production and IgA glomerular deposition in the MRL/lpr model of SLE. Autoimmunity. 37: 111–123
  • Walport, M. J. 2002. Complement and systemic lupus erythematosus. Arthritis Res. 4: S279–S293
  • Botto, M. 1998. C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp. Clin. Immunogenet. 15: 231–234
  • Pickering, M. C., M. Botto, P. R. Taylor, et al 2000. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 76: 227–324
  • Chatterjee, P., A. F. Agyemang, M. B. Alimzhanov, et al 2013. Complement C4 maintains peripheral B-cell tolerance in a myeloid cell dependent manner. Eur. J. Immunol. 43: 2441–2450

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.