528
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Aberrant function of myeloid-derived suppressor cells (MDSCs) in experimental colitis and in inflammatory bowel disease (IBD) immune responses

, , , , &
Pages 170-181 | Received 07 Jul 2016, Accepted 07 Jan 2017, Published online: 03 Mar 2017

References

  • Xavier, R. J., and D. K. Podolsky. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 448: 427–434
  • Kaser, A., S. Zeissig, and R. S. Blumberg. 2010. Inflammatory bowel disease. Annu. Rev. Immunol. 28: 573–621
  • Melgar, S., and F. Shanahan. 2010. Inflammatory bowel disease – from mechanisms to treatment strategies. Autoimmunity. 43: 463–477
  • Monteleone, G., D. Fina, R. Caruso, et al. 2006. New mediators of immunity and inflammation in inflammatory bowel disease. Curr. Opin. Gastroenterol. 22: 361–364
  • Shih, D. Q., and S. R. Targan. 2008. Immunopathogenesis of inflammatory bowel disease. World J. Gastroenterol. 14: 390–400
  • Pizarro, T. T., and F. Cominelli. 2007. Cytokine therapy for Crohn's disease: advances in translational research. Annu. Rev. Med. 58: 433–444
  • Hardenberg, G., T. S. Steiner, and M. K. Levings. 2011. Environmental influences on T regulatory cells in inflammatory bowel disease. Semin. Immunol. 23: 130–138
  • Gabrilovich, D. I., and S. Nagaraj. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9: 162–174
  • Gabrilovich, D. I., V. Bronte, S. H. Chen, et al. 2007. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67: 425. Author reply 426
  • Ribechini, E., V. Greifenberg, S. Sandwick, et al. 2010. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol. Immunol. 199: 273–281
  • Youn, J. I., S. Nagaraj, M. Collazo, et al. 2008. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181: 5791–5802
  • Ochoa, A. C., A. H. Zea, C. Hernandez, et al. 2007. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13: 721s–726s
  • Almand, B., J. I. Clark, E. Nikitina, et al. 2001. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166: 678–689
  • Ioannou, M., T. Alissafi, I. Lazaridis, et al. 2012. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J. Immunol. 188: 1136–1146
  • Vlachou, K., K. Mintzas, M. Glymenaki, et al. 2016. Elimination of granulocytic myeloid-derived suppressor cells in lupus-prone mice linked to reactive oxygen species-dependent extracellular trap formation. Arthritis Rheumatol. 68: 449–461
  • Nagaraj, S., M. Collazo, C. A. Corzo, et al. 2009. Regulatory myeloid suppressor cells in health and disease. Cancer Res. 69: 7503–7506
  • Rabinovich, G. A., D. Gabrilovich, and E. M. Sotomayor. 2007. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25: 267–296
  • Marigo, I., L. Dolcetti, P. Serafini, et al. 2008. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev. 222: 162–179
  • Serafini, P., I. Borrello, and V. Bronte. 2006. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 16: 53–65
  • Delano, M. J., P. O. Scumpia, J. S. Weinstein, et al. 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 204: 1463–1474
  • Garcia, M. R., L. Ledgerwood, Y. Yang, et al. 2010. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J. Clin. Invest. 120: 2486–2496
  • Marigo, I., E. Bosio, S. Solito, et al. 2010. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 32: 790–802
  • Boros, P., J. C. Ochando, S. H. Chen, et al. 2010. Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum. Immunol. 71: 1061–1066
  • La Cava, A. 2011. Regulatory immune cell subsets in autoimmunity. Autoimmunity. 44: 1–2
  • Cripps, J. G., and J. D. Gorham. 2011. MDSC in autoimmunity. Int. Immunopharmacol. 11: 789–793
  • Zhang, Q., M. Fujino, J. Xu, et al. 2015. The role and potential therapeutic application of myeloid-derived suppressor cells in allo- and autoimmunity. Mediators Inflamm. 2015: 421927
  • Crook, K. R., and P. Liu. 2014. Role of myeloid-derived suppressor cells in autoimmune disease. World J. Immunol. 4: 26–33
  • Ioannou, M., T. Alissafi, L. Boon, et al. 2013. In vivo ablation of plasmacytoid dendritic cells inhibits autoimmunity through expansion of myeloid-derived suppressor cells. J. Immunol. 190: 2631–2640
  • Condamine, T., and D. I. Gabrilovich. 2011. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32: 19–25
  • Peranzoni, E., S. Zilio, I. Marigo, et al. 2010. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22: 238–244
  • Youn, J. I., and D. I. Gabrilovich. 2010. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40: 2969–2975
  • Guan, Q., S. Moreno, G. Qing, et al. 2013. The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. J. Leukoc. Biol. 94: 803–811
  • Haile, L. A., R. von Wasielewski, J. Gamrekelashvili, et al. 2008. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 135: 871–881. 881.e1–5
  • Su, H., X. Cong, and Y. L. Liu. 2013. Transplantation of granulocytic myeloid-derived suppressor cells (G-MDSCs) could reduce colitis in experimental murine models. J. Dig. Dis. 14: 251–258
  • Varol, C., A. Vallon-Eberhard, E. Elinav, et al. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 31: 502–512
  • Ostanin, D. V., E. Kurmaeva, K. Furr, et al. 2012. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J. Immunol. 188: 1491–1502
  • Rivollier, A., J. He, A. Kole, et al. 2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209: 139–155
  • Scheiffele, F., and I. J. Fuss. 2002. Induction of TNBS colitis in mice. Curr. Protoc. Immunol. 49:15.19:15.19.1–15.19.14
  • Weigmann, B., I. Tubbe, D. Seidel, et al. 2007. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2: 2307–2311
  • Rossner, S., C. Voigtlander, C. Wiethe, et al. 2005. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur. J. Immunol. 35: 3533–3544
  • Srivastava, M. K., L. Zhu, M. Harris-White, et al. 2012. Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One. 7: e40677
  • Fujii, W., E. Ashihara, H. Hirai, et al. 2013. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J. Immunol. 191: 1073–1081
  • Guo, C., F. Hu, H. Yi, et al. 2016. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann. Rheum. Dis. 75: 278–285
  • Xi, Q., Y. Li, J. Dai, et al. 2015. High frequency of mononuclear myeloid-derived suppressor cells is associated with exacerbation of inflammatory bowel disease. Immunol. Invest. 44: 279–287
  • Zhang, R., S. Ito, N. Nishio, et al. 2011. Dextran sulphate sodium increases splenic Gr1(+)CD11b(+) cells which accelerate recovery from colitis following intravenous transplantation. Clin. Exp. Immunol. 164: 417–427
  • Zhang, H., H. Nguyen-Jackson, A. D. Panopoulos, et al. 2010. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood. 116: 2462–2471

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.