170
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Injection of inactive Bordetella pertussis and complete Freund’s adjuvant with Torpedo californica AChR increases the occurrence of experimental autoimmune myasthenia gravis in C57BL/6 mice

, , &
Pages 293-305 | Received 17 Jan 2017, Accepted 29 Apr 2017, Published online: 26 May 2017

References

  • Appel SH, Almon RR, Levy N. Acetylcholine receptor antibodies in myasthenia gravis. N Engl J Med. 1975;293:760–761.
  • Lindstrom JM, Seybold ME, Lennon VA, et al. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26:1054–1059.
  • Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002;2:797–804.
  • Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180:871–872.
  • Noda M, Takahashi H, Tanabe T, et al. Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982;299:793–797.
  • Noda M, Furutani Y, Takahashi H, et al. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature. 1983;305:818–823.
  • Boulter J, Luyten W, Evans K, et al. Isolation of a clone coding for the α-subunit of a mouse acetylcholine receptor. J Neurosci. 1985;5:2545–2552.
  • Karlin A. Molecular properties of nicotinic acetylcholine receptors. In: Colman CW, Poste G, Nicolson GL, editors. Cell surface and neuronal function. New York, NY: Elsevier/North-Holland Biochemical Press; 1980. p. 191–260.
  • Changeux JP, Devillers-Thiery A, Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984;225:1335–1345.
  • Hucho F. The nicotinic acetylcholine receptor and its ion channel. Eur J Biochem. 1986;158:211–226.
  • Sobel A, Weber M, Changeux JP. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977;80:215–224.
  • McCormick DJ, Atassi MZ. Localization and synthesis of the acetylcholine-binding site in the α-chain of the Torpedo californica acetylcholine receptor. Biochem J. 1984;224:995–1000.
  • Atassi MZ, Mulac-Jericevic B, Yokoi T, et al. Localization of the functional sites on the alpha chain of acetylcholine receptor. Fed Proc. 1987;46:2538–2547.
  • Hohlfeld R, Toyka KV, Tzartoss SJ, et al. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor α subunit. Proc Natl Acad Sci USA. 1987;84:5379–5383.
  • Christadoss P, Lindstrom JM, Melvold RW, et al. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics. 1985;21:33–38.
  • Bell J, Rassenti L, Smoot S, et al. HLA-DQ beta-chain polymorphism linked to myasthenia gravis. Lancet. 1986;i:1058–1060.
  • Fuchs S, Nevo D, Tarrab-Hazdai R, et al. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature. 1976;263:329–330.
  • Christadoss P, Lennon VA, David C. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptors is under H-2-linked Ir gene control. J Immunol. 1979;123:2540–2543.
  • Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis. Clin Immunol. 2000;94:75–87.
  • Pachner AR. Experimental models of myasthenia gravis: lessons in autoimmunity and progress toward better forms of treatment. Yale J Biol Med. 1987;60:169–177.
  • Oshima M, Maruta T, Ohtani M, et al. Vaccination with a MHC class II peptide in Alum and inactive pertussis strongly suppresses clinical MG in C57BL/6 mice. J Neuroimmunol. 2006;171:8–16.
  • Maruta T, Oshima M, Deitiker PR, et al. Use of Alum and inactive Bordetella pertussis for generation of antibodies against synthetic peptides in mice. Immunol Invest. 2006;35:137–148.
  • Engel AG, Tsujihata M, Lindstrom JM, et al. The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study. Ann N Y Acad Sci. 1976;274:60–79.
  • Lennon VA, Lindstrom JM, Seybold ME. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975;141:1365–1375.
  • Yoshikawa H, Iwasa K, Satoh K, et al. FK506 prevents induction of rat experimental autoimmune myasthenia gravis. J Autoimmun. 1997;10:11–16.
  • Mulac-Jericevic B, Kurisaki J, Atassi MZ. Profile of the continuous antigenic regions on the extracellular part of the alpha chain of an acetylcholine receptor. Proc Natl Acad Sci USA. 1987;84:3633–3637.
  • Mulac-Jericevic B, Atassi MZ. Profile of the α-bungarotoxin-binding regions on the extracellular part of the α-chain of Torpedo californica acetylcholine receptor. Biochem J. 1987;248:847–852.
  • Berman PW, Patrick J. Experimental myasthenia gravis. A murine system. J Exp Med. 1980;151:204–223.
  • Zar JH. Biostatistical analysis. 2nd ed. Englewood Cliffs (NJ): Prentice-Hall; 1996.
  • Oshima M, Pachner AR, Atassi MZ. Profile of the regions of acetylcholine receptor α chain recognized by T-lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor. Mol Immunol. 1994;31:833–843.
  • Lennon VA, McCormick DJ, Lambert EH, et al. Region of peptide 125–147 of acetylcholine receptor of α subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity, and modulating autoantibodies. Proc Natl Acad Sci USA. 1985;82:8805–8809.
  • Atassi MZ, Ruan KH, Jinnai K, et al. Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by a monomethoxypolyethylene glycol conjugate of a myasthenogenic synthetic peptide. Proc Natl Acad Sci USA. 1992;89:5852–5856.
  • Yokoi T, Mulac-Jericevic B, Kurisaki J, et al. T lymphocyte recognition of acetylcholine receptor: localization of the full T cell recognition profile on the extracellular part of the α chain of Torpedo californica acetylcholine receptor. Eur J Immunol. 1987;17:1697–1702.
  • Matthys P, Vermeire K, Mitera T, et al. Enhanced autoimmune arthritis in IFN-γ receptor-deficient mice is conditioned by mycobacteria in Freund’s adjuvant and by increased expansion of Mac-1+ myeloid cells. J Immunol. 1999;163:3503–3510.
  • Shenoy M, Oshima M, Atassi MZ, et al. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region α146–162 of acetylcholine receptor. Clin Immunol Immunopathol. 1993;66:230–238.
  • Pachner AR, Kantor FS, Mulac-Jericevic B, et al. An immunodominant site of acetylcholine receptor in experimental myasthenia gravis mapped with T-lymphocyte clones and synthetic peptides. Immunol Lett. 1989;20:199–204.
  • Milani M, Ostlie N, Wu H, et al. CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol. 2006;179:152–162.
  • Robinet M, Maillard S, Cron MA, et al. Review on toll-like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin Rev Allergy Immunol. 2017;52:133–147.
  • Shenoy M, Goluszko E, Christadoss P. The pathogenic role of acetylcholine receptor α chain epitope within α146–162 in the development of experimental autoimmune myasthenia gravis in C57BL6 mice. Clin Immunol Immunopathol. 1994;73:338–343.
  • Infante AJ, Thompson PA, Krolick KA, et al. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes. J Immunol. 1991;146:2977–2982.
  • Bellone M, Ostlie N, Lei SJ, et al. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol. 1991;147:1484–1491.
  • Oshima M, Atassi MZ. Effect of amino acid substitutions within the region 62–76 of I-Aβb on binding with and antigen presentation of Torpedo acetylcholine receptor α-chain peptide 146–162. J Immunol. 1995;154:5245–5254.
  • Rosenberg JS, Oshima M, Atassi MZ. B-cell activation in vitro by helper T cells specific to region α146–162 of Torpedo californica nicotinic acetylcholine receptor. J Immunol. 1996;157:3192–3199.
  • Atassi MZ, Oshima M. Autoimmune responses against acetylcholine receptor: T-B cell collaboration and manipulation by synthetic peptides. Crit Rev Immunol. 1997;17:481–495.
  • Nakayashiki N, Oshima M, Deitiker PR, et al. Suppression of experimental myasthenia gravis by monoclonal antibodies against MHC peptide region involved in presentation of a pathogenic T-cell epitope. J Neuroimmunol. 2000;105:131–144.
  • Oshima M, Deitiker P, Ashizawa T, et al. Vaccination with a MHC class II peptide attenuates cellular and humoral responses against tAChR and suppresses clinical EAMG. Autoimmunity. 2002;35:183–190.
  • Asthana D, Fujii Y, Huston GE, et al. Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol. 1993;67:240–248.
  • Zhang GX, Xiao BG, Yu LY, et al. Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR. J Neuroimmunol. 2001;113:10–18.
  • Poussin MA, Fuller CL, Goluszko E, et al. Suppressed clinical experimental autoimmune myasthenia gravis in bm12 mice is linked to reduced intracellular calcium mobilization and IL-10 and IFN-gamma release by acetylcholine receptor-specific T cells. J Neuroimmunol. 2003;134:104–110.
  • Zhang GX, Navikas V, Link H. Cytokines and the pathogenesis of myasthenia gravis. Muscle Nerve. 1997;20:543–551.
  • Milani M, Ostlie N, Wang W, et al. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci. 2003;998:284–307.
  • Shibaki A, Katz SI. Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp Dermatol. 2002;11:126–134.
  • Cox JC, Coulter AR. Adjuvants-a classification and review of their modes of action. Vaccine. 1997;15:248–256.
  • Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Immunol Today. 1993;14:281–284.
  • Rickman LS, Gordon DM, Wistar R Jr, et al. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine. Lancet. 1991;337:998–1001.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.
  • Akira S. Innate immunity and adjuvants. Philos Trans R Soc Lond B: Biol Sci. 2011;366:2748–2755.
  • Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.
  • Marta M, Meier UC, Lobell A. Regulation of autoimmune encephalomyelitis by toll-like receptors. Autoimmun Rev. 2009;8:506–509.
  • Billiau A, Matthys P. Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. J Leukoc Biol. 2001;70:849–860.
  • Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–151.
  • Kerfoot SM, Long EM, Hickey MJ, et al. TLR4 contribution to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol. 2004;173:7070–7077.
  • Racke MK, Hu W, Lovett-Racke AE. PTX cruiser: driving autoimmunity via TLR4. Trends Immunol. 2005;26:289–291.
  • Fujimoto C, Yu CR, Shi G, et al. Pertussis toxin is superior to TLR ligands in enhancing pathogenic autoimmunity, targeted at a neo-self antigen, by triggering robust expansion of Th1 cells and their cytokine production. J Immunol. 2006;177:6896–6903.
  • Hou W, Wu Y, Sun S, et al. Pertussis toxin enhances Th1 responses by stimulation of dendritic cells. J Immunol. 2003;170:1728–1736.
  • Wang ZY, Yang D, Chen Q, et al. Induction of dendritic cell maturation by pertussis toxin and B subunit differentially initiate Toll-like receptor 4-dependent signal transduction pathways. Exp Hematol. 2006;34:1115–1124.
  • Chen X, Winkler-Pickett RT, Carbonetti NH, et al. Pertussis toxin as an adjuvant suppresses the number and function of CD4 + CD25+ T regulatory cells. Eur J Immunol. 2006;36:671–680.
  • Uematsu S, Akira S. The role of Toll-like receptors in immune disorders. Expert Opin Biol Ther. 2006;6:203–214.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384.
  • Darabi K, Karulin AY, Boehm BO, et al. The third signal in T cell-mediated autoimmune disease? J Immunol. 2004;173:92–99.
  • Deitiker P, Ashizawa T, Atassi MZ. Antigen mimicry in autoimmune disease. Can immune responses to microbial antigens that mimic acetylcholine receptor act as initial triggers of myasthenia gravis? Hum Immunol. 2000;61:255–265.
  • Guler ML, Ligons DL, Wang Y, et al. Two autoimmune diabetes loci influencing T cell apoptosis control susceptibility to experimental autoimmune myocarditis. J Immunol. 2005;174:2167–2173.
  • Hamada Y, Takata M, Kiyoku H, et al. 2004. Monomethoxypolyethylene glycol-modified cardiac myosin treatment blocks the active and passive induction of experimental autoimmune myocarditis. Circ J. 68:149–155.
  • Amend B, Doster H, Lange C, et al. Induction of autoimmunity by expansion of autoreactive CD4 + CD62Llow cells in vivo. J Immunol. 2006;177:4384–4390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.