229
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Analysis of chosen polymorphisms rs2476601 a/G – PTPN22, rs1990760 C/T – IFIH1, rs179247 a/G – TSHR in pathogenesis of autoimmune thyroid diseases in children

, , , , , & show all
Pages 183-190 | Received 21 Jan 2018, Accepted 06 Jun 2018, Published online: 04 Jul 2018

References

  • Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20:715–725.
  • Dong YH, Fu DG. Autoimmune thyroid disease: mechanism, genetics and current knowledge. Eur Rev Med Pharmacol Sci. 2014;18:3611–3618.
  • Bossowski A, Harasymczuk J, Moniuszko A, et al. Cytometric evaluation of intracellular INF-y and IL-4 levels in thyroid follicular cells from patients with autoimmune thyroid diseases. Thyroid Res. 2011;4:13.
  • Hasham A, Tomer Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res. 2012;54:204–213.
  • Bossowski A, Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, et al. Analysis of chosen polymorphisms in FoxP3 gene in children and adolescents with autoimmune thyroid diseases. Autoimmunity. 2014;47:395–400.
  • Lee HJ, Li CW, Hammerstad SS, et al. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90.
  • Bossowski A, Stasiak-Barmuta A, Urban M. Relationship between CTLA-4 and CD28 molecule expression on T lymphocytes and stimulating and blocking autoantibodies to the TSH-receptor in children with Graves’ disease. Horm Res Paediatr. 2005;64:189–197.
  • Bottini N, Vang T, Cucca F, et al. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol. 2006;18:207–213.
  • Heward JM, Brand OJ, Barrett JC, et al. Association of PTPN22 haplotypes with Graves’ disease. J Clin Endocrinol Metab. 2007;92:685–690.
  • Lea W, Lee Y. The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus. 2011;20:51–57.
  • Begovich BA, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75:330–337.
  • Wesoly J, van der Helm-van Mil AH, Toes RE, et al. Association of the PTPN22 C1858T single-nucleotide polymorphism with rheumatoid arthritis phenotypes in an inception cohort. Arthritis Rheum. 2005;52:2948–2950.
  • Vandiedonck C, Capdevielle C, Giraud M, et al. Association of the PTPN22∗R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol. 2006;59:404–407.
  • Jagiello P, Aries P, Arning L, et al. The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 2005;52:4039–4043.
  • Skinningsrud B, Husebye ES, Gervin K, et al. Mutation screening of PTPN22: association of the 1858T-allele with Addison’s disease. Eur J Hum Genet. 2008;16:977–982.
  • Diaz-Gallo LM, Gourh P, Broen J, et al. Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann Rheum Dis. 2011;70:454–462.
  • Canton I, Akhtar S, Gavalas NG, et al. A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun. 2005;6:584–587.
  • Bouças AP, Oliveira Fdos S, Canani LH, et al. The role of interferon induced with helicase C domain 1 (IFIH1) in the development of type 1 diabetes mellitus. Arq Bras Endocrinol Metabol. 2013;57:667–676.
  • Cen H, Wang W, Leng RX, et al. Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity. 2013;46:455–462.
  • Fujii A, Inoue N, Watanabe M, et al. TSHR gene polymorphisms in the enhancer regions are most strongly associated with the development of Graves’ disease, especially intractable disease, and with that of Hashimoto’s disease. Thyroid. 2017;27:111–119.
  • Tomer Y, Barbesino G, Keddache M, et al. Mapping of a major susceptibility locus for Graves’ disease (GD-1) to chromosome 14q31. J Clin Endocrinol Metab. 1997;82:1645–1648.
  • Tomer Y, Hasham A, Davies TF, et al. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. J Clin Endocrinol Metab. 2013;98:E144–E152.
  • Lydersen S, Fagerland MW, Laake P. Recommended tests for association in 2 x 2 tables. Stat Med. 2009;28:1159–1175.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser B. 1995;57:289–300.
  • Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15:72–101.
  • Core Team R. 2012. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN3-900051-07-0. Available from: http://www.R-project.org/.
  • Xiong H, Wu M, Yi H, et al. Genetic associations of the thyroid stimulating hormone receptor gene with Graves diseases and Graves ophthalmopathy: a meta-analysis. Sci Rep. 2016;6:30356.
  • Stefan M, Faustino LC. Genetics of thyroid-stimulating hormone receptor – relevance for autoimmune thyroid disease. Front. Endocrinol. 2017;8:57.
  • Brand OJ, Barrett JC, Simmonds MJ, et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet. 2009;18:1704–1713.
  • Colobran R, Armengol Mdel P, Faner R, et al. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum. Mol. Genet. 2011;20:3415–3423.
  • Bufalo NE, Dos Santos RB, Marcello MA, et al. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves’ disease and Graves’ ophthalmopathy. J Endocrinol Invest. 2015;38:555–561.
  • Ploski R, Brand OJ, Jurecka-Lubieniecka B, et al. Thyroid stimulating hormone receptor (TSHR) intron 1 variants are major risk factors for Graves’ disease in three European Caucasian cohorts. PLoS One. 2010;5:e15512.
  • Liu L, Wu HQ, Wang Q, et al. Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocr J. 2012;59:717–723.
  • Jurecka-Lubieniecka B, Ploski R, Kula D, et al. Association between polymorphisms in the TSHR gene and Graves’ orbitopathy. PLoS One. 2014;9:e102653.
  • Zurawek M, Fichna M, Fichna P, et al. Cumulative effect of IFIH1 variants and increased gene expression associated with type 1 diabetes. Diabetes Res Clin Pract. 2015;107:259–266.
  • Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38:617–619.
  • Sutherland A, Davies J, Owen CJ, et al. Genomic polymorphism at the interferon induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J Clin Endocrinol Metab. 2007;92:3338–3341.
  • Penna-Martinez M, Ramos-Lopez E, Robbers I, et al. The rs1990760 polymorphism within the IFIH1 locus is not associated with Graves’ disease, Hashimoto’s thyroiditis and Addison’s disease. BMC Med Genet. 2009;10:126.
  • Fiorillo E, Orrú V, Stanford SM, et al. Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J Biol Chem. 2010;285:26506–26518.
  • Lopez-Cano DJ, Cadena-Sandoval D, Beltrán-Ramírez O, et al. The PTPN22 R263Q polymorphism confers protection against systemic lupus erythematosus and rheumatoid arthritis, while PTPN22 R620W confers susceptibility to Graves’ disease in a Mexican population. Inflamm Res. 2017;66:775–781.
  • Zheng J, Ibrahim S, Petersen F, et al. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun. 2012;13:641–652.
  • Ban Y, Tozaki T, Taniyama M, et al. Genomic polymorphism in the interferon-induced helicase (IFIH1) gene does not confer susceptibility to autoimmune thyroid disease in the Japanese population. Horm Metab Res. 2010;42:70–72.
  • Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004;53:3020–3023.
  • Skorka A, Bednarczuk T, Bar-Andziak E, et al. Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol. 2005;62:679–682.
  • Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89:5862–5865.
  • Ban Y, Tozaki T, Nakano Y. Association studies of the GPR103 and BCL2L15 genes in autoimmune thyroid disease in the Japanese population. Front Endocrinol. 2016;7:92.
  • Luo L, Cai B, Liu F, et al. Association of protein tyrosine phosphatase nonreceptor 22 (PTPN22) C1858T gene polymorphism with susceptibility to autoimmune thyroid diseases: a meta-analysis. Endocr J. 2012;59:439–445.
  • Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32:231–239.
  • Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76:561–567.
  • Ahmadov G. Study of the PTPN22 gene in children with type 1 diabetes mellitus in the Azerbaijani population. Georgian Med News. 2017;271:45–49.
  • Krischer JP, Lynch KF, Lernmark A, et al. TEDDY Study Group. Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: The TEDDY Study. Diab Care. 2017;40:1194–1202.
  • Dultz G, Matheis N, Dittmar M, et al. The protein tyrosine phosphatase non-receptor type 22C1858T polymorphism is a joint susceptibility locus for immunthyroiditis and autoimmune diabetes. Thyroid. 2009;19:143–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.