142
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Immunization with plasmids encoding M2 acetylcholine muscarinic receptor epitopes impairs cardiac function in mice and induces autophagy in the myocardium

, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 245-257 | Received 13 Apr 2018, Accepted 17 Aug 2018, Published online: 13 Nov 2018

References

  • Krejčí A, Michal P, Jakubik J, et al. Regulation of signal transduction at M 2 muscarinic receptor. Physiol Res. 2004;53:S131–S140.
  • Matsui S, Fu ML, Shimizu M, et al. Dilated cardiomyopathy defines serum autoantibodies against G-protein-coupled cardiovascular receptors. Autoimmunity. 1995;21:85–88.
  • Fu L-x, Magnusson Y, Bergh C-H, et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;91:1964–1968.
  • Costa P, Fortes F, Machado A, et al. Sera from chronic chagasic patients depress cardiac electrogenesis and conduction. Braz J Med Biol Res. 2000;33:439–446.
  • Wallukat G, Saravia SGM, Haberland A, et al. Distinct patterns of autoantibodies against g-protein–coupled receptors in chagas' cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas' patients. J Am Coll Cardiol. 2010;55:463–468.
  • Omerovic E, Bollano E, Andersson B, et al. Induction of cardiomyopathy in severe combined immunodeficiency mice by transfer of lymphocytes from patients with idiopathic dilated cardiomyopathy. Autoimmunity. 2000;32:271–280.
  • Fu ML, Schulze W, Wallukat G, et al. A synthetic peptide corresponding to the second extracellular loop of the human M2 acetylcholine receptor induces pharmacological and morphological changes in cardiomyocytes by active immunization after 6 months in rabbits. Clin Immunol Immunopathol. 1996;78:203–207.
  • Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol. 1997;29:641–655.
  • Elies R, Fu L, Eftekhari P, et al. Immunochemical and functional characterization of an agonist‐like monoclonal antibody against the M2 acetylcholine receptor. Eur J Biochem. 1998;251:659–666.
  • Hernández CCQ, Barcellos LC, Giménez LED, et al. Human chagasic IgGs bind to cardiac muscarinic receptors and impair L-type Ca2+ currents. Cardiovasc Res. 2003;58:55–65.
  • Hernández CC, Nascimento JH, Chaves EA, et al. Autoantibodies enhance agonist action and binding to cardiac muscarinic receptors in chronic Chagas' disease. J Recept Signal Transduct. 2008;28:375–401.
  • Retondaro F, Dos Santos Costa P, Pedrosa R, et al. Presence of antibodies against the third intracellular loop of the m2 muscarinic receptor in the sera of chronic chagasic patients. Faseb J. 1999;13:2015–2020.
  • Giménez LE, Hernández CC, Mattos EC, et al. DNA immunizations with M2 muscarinic and beta1 adrenergic receptor coding plasmids impair cardiac function in mice. J Mol Cell Cardiol. 2005;38:703–714.
  • Jahns R, Boivin V, Schwarzbach V, et al. Pathological autoantibodies in cardiomyopathy. Autoimmunity. 2008;41:454–461.
  • Martinez CG, Zamith-Miranda D, Da Silva MG, et al. P2X7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M 2 receptors: autoantibody levels, heart functionality and cytokine expression. Sci Rep. 2015;5:16940.
  • Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today. 1993;14:426–430.
  • Zhang S, He Z, Wang J, et al. Mitochondrial ultrastructural alterations and declined M2 receptor density were involved in cardiac dysfunction in rats after long term treatment with autoantibodies against M2 muscarinic receptor. PLoS One. 2015;10:e0129563.
  • Wilson DJ, North N, Wilson RA. Comparison of left ventricular ejection fraction calculation methods. Echocardiography. 1998;15:709–712.
  • Lappé JM, Pelfrey CM, Tang WW. Recent insights into the role of autoimmunity in idiopathic dilated cardiomyopathy. J Card Fail. 2008;14:521–530.
  • Fairweather D, Rose NR. Inflammatory heart disease: a role for cytokines. Lupus. 2005;14:646–651.
  • Jahns R, Boivin V, Hein L, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest. 2004;113:1419–1429.
  • Zuo L, Bao H, Tian J, et al. Long-term active immunization with a synthetic peptide corresponding to the second extracellular loop of β1-adrenoceptor induces both morphological and functional cardiomyopathic changes in rats. Int J Cardiol. 2011;149:89–94.
  • Yoshizawa A, Nagai S, Baba Y, et al. Autoimmunity against M2 muscarinic acetylcholine receptor induces myocarditis and leads to a dilated cardiomyopathy like phenotype. Eur J Immunol. 2012;42:1152–1163.
  • Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003;9:1477–1483.
  • Kurtenbach E, Martinez CG. IFN-γ versus IL-17: a battle during cardiac autoimmunity evolution. In: Mourad A, editor. Immunopathogenesis and immune-based therapy for selected autoimmune disorders. London: IntechOpen; 2017. Available from: https://www.intechopen.com/books/immunopathogenesis-and-immune-based-therapy-for-selected-autoimmune-disorders/ifn-versus-il-17-a-battle-during-cardiac-autoimmunity-evolution
  • Nussinovitch U, Shoenfeld Y. The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin. Clinic Rev Allerg Immunol. 2012;42:298–308.
  • Levin MJ, Hoebeke J. Cross-talk between anti-beta1-adrenoceptor antibodies in dilated cardiomyopathy and Chagas' heart disease. Autoimmunity. 2008;41:429–433.
  • Munoz-Saravia SG, Haberland A, Wallukat G, et al. Chronic Chagas’ heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail Rev. 2012;17:45–64.
  • del Corsso C, de Carvalho ACC, Martino HF, et al. Sera from patients with idiopathic dilated cardiomyopathy decrease I Ca in cardiomyocytes isolated from rabbits. Am J Physiol Heart Circ Physiol. 2004;287:H1928–H1936.
  • Jiang H, Cheng D, Liu W, et al. Protein kinase C inhibits autophagy and phosphorylates LC3. Bioch Biophys Res Commun. 2010;395:471–476.
  • Jane-wit D, Altuntas CZ, Johnson JM, et al. Beta 1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis. Circulation. 2007;116:399–410.
  • Hoppel CL, Tandler B, Fujioka H, et al. Dynamic organization of mitochondria in human heart and in myocardial disease. International J Biochem Cell Biol. 2009;41:1949–1956.
  • Dutta D, Calvani R, Bernabei R, et al. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res. 2012;110:1125–1138.
  • Lee Y, Lee H-Y, Gustafsson ÅB. Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol. 2012;60:118–124.
  • Baek K-H, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev. 2012;41:3245–3263.
  • Shoji-Kawata S, Sumpter R, Leveno M, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494:201–206.
  • Zhao M, Sun L, Yu X-J, et al. Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury. Cell Physiol Biochem. 2013;32:601–613.
  • Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest. 2013;123:5284–5297.
  • Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle. 2012;11:2092–2099.
  • Saito T, Asai K, Sato S, et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 2016;12:579–587.
  • Riehle C, Wende AR, Sena S, et al. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest. 2013;123:5319–5333.
  • Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075.
  • Matsui S, Fu M, Hayase M, et al. Transfer of immune components from rabbit autoimmune cardiomyopathy into severe combined immunodeficiency (SCID) mice induces cardiomyopathic changes. Autoimmunity. 2006;39:121–128.
  • Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94:296–305.
  • Knöll R, Buyandelger B. Z-disc Transcriptional coupling, sarcomeroptosis and mechanopoptosis. Cell Biochem Biophys. 2013;66:65–71.
  • Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart and Circ Physiol. 2006;290:H1313–H1325.
  • Kant S, Krull P, Eisner S, et al. Histological and ultrastructural abnormalities in murine desmoglein 2-mutant hearts. Cell Tissue Res. 2012;348:249–259.
  • Kostin S, Pool L, Elsässer A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.