2,385
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Active NET formation in Libman–Sacks endocarditis without antiphospholipid antibodies: A dramatic onset of systemic lupus erythematosus

ORCID Icon, , , ORCID Icon, , , , , ORCID Icon, , & ORCID Icon show all
Pages 310-318 | Received 12 Jun 2018, Accepted 18 Aug 2018, Published online: 28 Oct 2018

References

  • Grayson PC, Schauer C, Herrmann M, et al. Review: neutrophils as invigorated targets in rheumatic diseases. Arthritis Rheumatol. 2016;68:2071–2082.
  • Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol. 2018;14:467–475.
  • Weitzman RJ, Walker SE. The LE cell test revisited. Lab Med. 1976;7:22–29.
  • Bouts YM, Wolthuis DF, Dirkx MF, et al. Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity. 2012;45:597–601.
  • Denny MF, Yalavarthi S, Zhao W, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184:3284–3297.
  • Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187:538–552.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–1535.
  • Leffler J, Ciacma K, Gullstrand B, et al. A subset of patients with systemic lupus erythematosus fails to degrade DNA from multiple clinically relevant sources. Arthritis Res Ther. 2015;17:205.
  • Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146–153.
  • Smith CK, Vivekanandan-Giri A, Tang CKJS, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014;66:2532–2544.
  • Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290–304.
  • Zhao J, Ma J, Deng Y, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49:433–437.
  • Olsson LM, Johansson ÅC, Gullstrand B, et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76:1607–1613.
  • Lopez JA, Ross RS, Fishbein MC, et al. Nonbacterial thrombotic endocarditis: a review. Am Heart J. 1987;113:773–784.
  • Mazokopakis EE, Syros PK, Starakis IK. Nonbacterial thrombotic endocarditis (marantic endocarditis) in cancer patients. Cardiovasc Hematol Disord Drug Targets. 2010; 10:84–86.
  • Moyssakis I, Tektonidou MG, Vasilliou VA, et al. Libman–Sacks endocarditis in systemic lupus erythematosus: prevalence, associations, and evolution. Am J Med. 2007;120:636–642.
  • Libman E, Sacks B. A hitherto undescribed form of valvular and mural endocarditis. Arch Intern Med (Chic). 1924;33:701–737.
  • Eiken PW, Edwards WD, Tazelaar HD, et al. Surgical pathology of nonbacterial thrombotic endocarditis in 30 patients, 1985–2000. Mayo Clin Proc. 2001;76:1204–1212.
  • Khamashta MA, Cervera R, Asherson RA, et al. Association of antibodies against phospholipids with heart valve disease in systemic lupus erythematosus. Lancet. 1990;335:1541–1544.
  • Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378:2010–2021.
  • Roldan CA, Shively BK, Crawford MH. An echocardiographic study of valvular heart disease associated with systemic lupus erythematosus. N Engl J Med. 1996;335:1424–1430.
  • Frodlund M, Dahlström O, Kastbom A, et al. Associations between antinuclear antibody staining patterns and clinical features of systemic lupus erythematosus: analysis of a regional Swedish register. BMJ Open. 2013;3:e003608.
  • Enocsson H, Sjöwall C, Wirestam L, et al. Four anti-dsDNA antibody assays in relation to systemic lupus erythematosus disease specificity and activity. J Rheumatol. 2015;42:817–825.
  • Wirestam L, Frodlund M, Enocsson H, et al. Osteopontin is associated with disease severity and antiphospholipid syndrome in well-characterized Swedish cases of systemic lupus erythematosus. Lupus Sci Med. 2017;4:e000225.
  • Söderberg D, Kurz T, Motamedi A, et al. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford). 2015;54:2085–2094.
  • Ighe A, Dahlström Ö, Skogh T, et al. Application of the 2012 Systemic Lupus International Collaborating Clinics classification criteria on a regional Swedish systemic lupus erythematosus register. Arthritis Res Ther. 2015;17:3.
  • Austin HA, 3rd, Klippel JH, Balow JE, et al. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med. 1986;314:614–619.
  • Sakai Y, Atsumi T, Ieko M, et al. The effects of phosphatidylserine-dependent antiprothrombin antibody on thrombin generation. Arthritis Rheum. 2009;60:2457–2467.
  • Sciascia S, Khamashta MA, Bertolaccini ML. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies. Curr Rheumatol Rep. 2014;16:415.
  • Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.
  • Hughes GRV, Khamashta MA. Seronegative antiphospholipid syndrome. Ann Rheum Dis. 2003;62:1127
  • Sarter K, Janko C, André S, et al. Autoantibodies against galectins are associated with antiphospholipid syndrome in patients with systemic lupus erythematosus. Glycobiology. 2013;23:12–22.
  • Sciascia S, Amigo MC, Roccatello D, et al. Diagnosing antiphospholipid syndrome: ‘extra-criteria’ manifestations and technical advances. Nat Rev Rheumatol. 2017;13:548–560.
  • Marchetti T, Ribi C, Perneger T, et al. Prevalence, persistence and clinical correlations of classic and novel antiphospholipid antibodies in systemic lupus erythematosus. Rheumatology (Oxford). 2018;57:1350–1357.
  • van der Linden M, van den Hoogen LL, Westerlaken GHA, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford) 2018;57:1228–1234.
  • Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody mediated venous thrombosis. Arthritis Rheumatol. 2017;69:655–667.
  • Yalavarthi S, Gould TJ, Rao AN, et al. Antiphospholipid antibodies promote the release of neutrophil extracellular traps: a new mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67:2990–3003.
  • Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20.
  • Van Avondt K, Fritsch-Stork R, Derksen RHWM, et al. Ligation of signal inhibitory receptor on leukocytes-1 suppresses the release of neutrophil extracellular traps in systemic lupus erythematosus. PLoS One. 2013;8:e78459.
  • Carmona-Rivera C, Zhao W, Yalavarthi S, et al. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis. 2015;74:1417–1424.
  • Rother N, Pieterse E, Lubbers J, et al. Acetylated histones in apoptotic microparticles drive the formation of neutrophil extracellular traps in active lupus nephritis. Front Immunol. 2017;8:1136.
  • Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469.
  • Sjöwall C, Olin AI, Skogh T, et al. C-reactive protein, immunoglobulin G and complement co-localize in renal immune deposits of proliferative lupus nephritis. Autoimmunity. 2013;46:205–214.
  • van der Linden M, Meyaard L. Fine-tuning neutrophil activation: strategies and consequences. Immunol Lett. 2016;178:3–9.
  • Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10:579–596.
  • Faust TW, Chang EH, Kowal C, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci U S A. 2010;107:18569–18574.
  • Vrethem M, Ernerudh J, Lindström F, et al. Immunoglobulins within the central nervous system in primary Sjögren’s syndrome. J Neurol Sci. 1990;100:186–192.
  • Mevorach D, Raz E, Steiner I. Evidence for intrathecal synthesis of autoantibodies in systemic lupus erythematosus with neurological involvement. Lupus. 1994;3:117–121.
  • Mégevand P, Chizzolini C, Chofflon M, et al. Cerebrospinal fluid anti-SSA autoantibodies in primary Sjögren’s syndrome with central nervous system involvement. Eur Neurol. 2007;57:166–171.
  • Hummers LK, Krishnan C, Casciola-Rosen L, et al. Recurrent transverse myelitis associates with anti-Ro (SSA) autoantibodies. Neurology. 2004;62:147–149.
  • Qiao L, Wang Q, Fei Y, et al. The clinical characteristics of primary Sjögren’s syndrome with neuromyelitis optica spectrum disorder in China: a STROBE-compliant article. Medicine. 2015;94:e1145.