333
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Crystalline silica activates the T-cell and the B-cell antigen receptor complexes and induces T-cell and B-cell proliferation

, , , &
Pages 136-143 | Received 27 Dec 2018, Accepted 29 Apr 2019, Published online: 23 May 2019

References

  • De Vuyst P, Camus P. The past and present of pneumoconioses. Curr Opin Pulm Med. 2000;6:151–156.
  • Pollard KM. Silica, silicosis, and autoimmunity. Front Immunol. 2016;7:97.
  • Lee S, Hayashi H, Mastuzaki H, et al. Silicosis and autoimmunity. Curr Opin Allergy Clin Immunol. 2017;17:78–84.
  • Caplan A. Certain unusual radiological appearances in the chest of coal-miners suffering from rheumatoid arthritis. Thorax. 1953;8:29–37.
  • Stolt P, Kallberg H, Lundberg I, et al. Silica exposure is associated with increased risk of developing rheumatoid arthritis: results from the Swedish EIRA study. Ann Rheum Dis. 2005;64:582–586.
  • Makol A, Reilly MJ, Rosenman KD. Prevalence of connective tissue disease in silicosis (1985–2006)- a report from the state of Michigan surveillance system for silicosis. Am J Ind Med. 2011;54:255–262.
  • Erasmus LD. Scleroderma in goldminers on the Witwatersrand with particular reference to pulmonary manifestations. S Afr J Lab Clin Med. 1957;3:209–231.
  • McCormic ZD, Khuder SS, Aryal BK, et al. Occupational silica exposure as a risk factor for scleroderma: a meta-analysis. Int Arch Occup Environ Health. 2010;83:763–769.
  • Parks CG, Cooper GS, Nylander-French LA, et al. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: a population-based, case-control study in the southeastern United States. Arthritis Rheum. 2002;46:1840–1850.
  • Hogan SL, Cooper GS, Savitz DA, et al. Association of silica exposure with anti-neutrophil cytoplasmic autoantibody small-vessel vasculitis: a population-based, case-control study. Clin J Am Soc Nephrol. 2007;2:290–299.
  • Lippmann M, Eckert HL, Hahon N, et al. Circulating antinuclear and rheumatoid factors in coal miners. A prevalence study in Pennsylvania and West Virginia. Ann Intern Med. 1973;79:807–811.
  • Doll NJ, Stankus RP, Hughes J, et al. Immune complexes and autoantibodies in silicosis. J Allergy Clin Immunol. 1981;68:281–285.
  • Hayashi H, Miura Y, Maeda M, et al. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23:1099–1109.
  • Rocha-Parise M, Santos LM, Damoiseaux JG, et al. Lymphocyte activation in silica-exposed workers. Int J Hyg Environ Health. 2014;217:586–591.
  • Huang SH, Hubbs AF, Stanley CF, et al. Immunoglobulin responses to experimental silicosis. Toxicol Sci. 2001;59:108–117.
  • Brown JM, Pfau JC, Holian A. Immunoglobulin and lymphocyte responses following silica exposure in New Zealand mixed mice. Inhal Toxicol. 2004;16:133–139.
  • Wu P, Hyodoh F, Hatayama T, et al. Induction of CD69 antigen expression in peripheral blood mononuclear cells on exposure to silica, but not by asbestos/chrysotile-A. Immunol Lett. 2005;98:145–152.
  • Hirai T, Yoshioka Y, Takahashi H, et al. Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells. Biochem Biophys Res Commun. 2012;427:553–556.
  • Vis B, Hewitt RE, Faria N, et al. Non-functionalized ultrasmall silica nanoparticles directly and size-selectively activate T cells. ACS Nano. 2018;12:10843–10854.
  • Schwartz RH. Historical overview of immunological tolerance. Cold Spring Harb Perspect Biol. 2012;4:a006908.
  • Ueki A, Yamaguchi M, Ueki H, et al. Polyclonal human T-cell activation by silicate in vitro. Immunology. 1994;82:332–335.
  • Khalil N, Churg A, Muller N, et al. Environmental, inhaled and ingested causes of pulmonary fibrosis. Toxicol Pathol. 2007;35:86–96.
  • Samelson LE, Harford JB, Klausner RD. Identification of the components of the murine T cell antigen receptor complex. Cell. 1985;43:223–231.
  • Reth M. Antigen receptor tail clue. Nature. 1989;338:383–384.
  • Eleftheriadis T, Antoniadi G, Liakopoulos V, et al. T-cell zeta chain expression, phosphorylation and degradation and their role in T-cell signal transduction and immune response regulation in health and disease. Curr Signal Transid. 2006;1:191–208.
  • Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Rep. 2013;5:40.
  • Chou C, Egawa T. Myc or no Myc, that is the question. EMBO J. 2015;34:1990–1991.
  • Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–882.
  • Murn J, Mlinaric-Rascan I, Vaigot P, et al. A Myc-regulated transcriptional network controls B-cell fate in response to BCR triggering. BMC Genomics. 2009;10:323.
  • Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992;13:136–142.
  • Huse M. The T-cell-receptor signaling network. J Cell Sci. 2009;122:1269–1273.
  • Dalporto J. B cell antigen receptor signaling 101. Mol Immunol. 2004;41:599–613.
  • Lin W, Huang YW, Zhou XD, et al. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217:252–259.
  • Badding MA, Stefaniak AB, Fix NR, et al. Cytotoxicity and characterization of particles collected from an indium-tin oxide production facility. J Toxicol Environ Health A. 2014;77:1193–1209.
  • Vuong NQ, Goegan P, De Rose F, et al. Responses of A549 human lung epithelial cells to cristobalite and alpha-quartz exposures assessed by toxicoproteomics and gene expression analysis. J Appl Toxicol. 2017;37:721–731.
  • Guy CS, Vignali KM, Temirov J, et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol. 2013;14:262–270.
  • Eleftheriadis T, Pissas G, Antoniadi G, et al. Indoleamine 2,3dioxygenase downregulates Tcell receptor complex zetachain and cMyc, and reduces proliferation, lactate dehydrogenase levels and mitochondrial glutaminase in human Tcells. Mol Med Rep. 2016;13:925–932.
  • Pascual J. The pharmacokinetics of everolimus in de novo kidney transplant patients receiving tacrolimus: an analysis from the randomized ASSET study. Ann Transplant. 2014;19:337–345.
  • Wicker LS, Boltz RC, Jr., Matt V, et al. Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol. 1990;20:2277–2283.
  • Donahue AC, Fruman DA. Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation. J Immunol. 2003;170:5851–5860.
  • Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–856.
  • Hari A, Zhang Y, Tu Z, et al. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci Rep. 2014;4:7281.
  • Ng G, Sharma K, Ward SM, et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity. 2008;29:807–818.
  • Eleftheriadis T, Pissas G, Sounidaki M, et al. Urate crystals directly activate the T-cell receptor complex and induce T-cell proliferation. Biomed Rep. 2017;7:365–369.
  • Flach TL, Ng G, Hari A, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011;17:479–487.
  • Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis. 2016;251:197–205.
  • Nolan RP, Langer AM, Harington JS, et al. Quartz hemolysis as related to its surface functionalities. Environ Res. 1981;26:503–520.
  • Westerhausen C, Strobl FG, Herrmann R, et al. Chemical and mechanical impact of silica nanoparticles on the phase transition behaviour of phospholipid membranes in theory and experiment. Biophys J. 2012;102:1032–1038.
  • Kettiger H, Québatte G, Perrone B, et al. Interactions between silica nanoparticles and phospholipid membranes. Biochim Biophy Acta Biomembr. 2016;1858:2163–2170.
  • Shinto H, Fukasawa T, Yoshisue K, et al. Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Adv Powder Technol. 2014;25:1872–1881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.