400
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The gene mutations and subtelomeric DNA methylation in immunodeficiency, centromeric instability and facial anomalies syndrome

, , , &
Pages 192-198 | Received 17 May 2019, Accepted 16 Aug 2019, Published online: 02 Sep 2019

References

  • Maraschio P, Zuffardi O, Dalla Fior T, et al. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25:173–180.
  • Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA. 1999;96:14412–14417.
  • de Greef JC, Wang J, Balog J, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet. 2011;88:796–804.
  • Thijssen PE, Ito Y, Grillo G, et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun. 2015;6:7870.
  • Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol. 2004;24:9048–9058.
  • Auclair G, Guibert S, Bender A, et al. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 2014;15:545.
  • Thompson JJ, Kaur R, Sosa CP, et al. ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Res. 2018;46:10034–10051.
  • Wu H, Thijssen PE, de Klerk E, et al. Converging disease genes in ICF syndrome: ZBTB24 controls expression of CDCA7 in mammals. Hum Mol Genet. 2016;25:4041–4051.
  • Jenness C, Giunta S, Muller MM, et al. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci USA. 2018;115:E876–E885.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.
  • Duan L, Liu Y, Wang J, et al. The dynamic changes of DNA methylation in primordial germ cell differentiation. Gene. 2016;591:305–312.
  • Hu H, Chen X, Zhou C, et al. Aberrant methylation of mutL homolog 1 is associated with increased risk of non-small cell lung cancer. J Clin Lab Anal. 2018;32:e22370.
  • Jin B, Tao Q, Peng J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17:690–709.
  • Gatto S, Gagliardi M, Franzese M, et al. ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing. Nucleic Acids Res. 2017;45:5739–5756.
  • Sagie S, Ellran E, Katzir H, et al. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum Mol Genet. 2014;23:3629–3640.
  • Toubiana S, Velasco G, Chityat A, et al. Subtelomeric methylation distinguishes between subtypes of immunodeficiency, centromeric instability and facial anomalies syndrome. Hum Mol Genet. 2018;27:3568–3581.
  • Hu H, Li B, Duan S. The alteration of subtelomeric DNA methylation in aging-related diseases. Front Genet. 2018;9:697
  • Oh BK, Um TH, Choi GH, et al. Frequent changes in subtelomeric DNA methylation patterns and its relevance to telomere regulation during human hepatocarcinogenesis. Int J Cancer. 2011;128:857–868.
  • Upadhyaya M, Lunt PW, Sarfarazi M, et al. DNA marker applicable to presymptomatic and prenatal diagnosis of facioscapulohumeral disease. Lancet. 1990;336:1320–1321.
  • Wijmenga C, Frants RR, Brouwer OF, et al. Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet. 1990;336:651–653.
  • Hansen RS, Stoger R, Wijmenga C, et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum Mol Genet. 2000;9:2575–2587.
  • Ehrlich M, Buchanan KL, Tsien F, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10:2917–2931.
  • Nitta H, Unoki M, Ichiyanagi K, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58:455–460.
  • Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003;109:17–28.
  • Hagleitner MM, Lankester A, Maraschio P, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2007;45:93–99.
  • Rechavi E, Lev A, Eyal E, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–809.
  • Gimelli G, Varone P, Pezzolo A, et al. ICF syndrome with variable expression in sibs. J Med Genet. 1993;30:429–432.
  • Smeets DF, Moog U, Weemaes CM, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–246.
  • Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1:1–9.
  • Franceschini P, Martino S, Ciocchini M, et al. Variability of clinical and immunological phenotype in immunodeficiency-centromeric instability-facial anomalies syndrome. Report of two new patients and review of the literature. Eur J Pediatr. 1995;154:840–846.
  • Weemaes CM, van Tol MJ, Wang J, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21:1219–1225.
  • van den Boogaard ML, Thijssen PE, Aytekin C, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92:380–387.
  • Gennery AR, Slatter MA, Bredius RG, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120:e1341–1344.
  • Gossling KL, Schipp C, Fischer U, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.
  • Chouery E, Abou-Ghoch J, Corbani S, et al. A novel deletion in ZBTB24 in a Lebanese family with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Clin Genet. 2012;82:489–493.
  • Herrmann M, Pusceddu I, Marz W, et al. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018;56:1210–1222.
  • Steinert S, Shay JW, Wright WE. Modification of subtelomeric DNA. Mol Cell Biol. 2004;24:4571–4580.
  • Maeda T, Guan JZ, Koyanagi M, et al. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease. J Neurogenet. 2012;26:245–251.
  • Macina RA, Negorev DG, Spais C, et al. Sequence organization of the human chromosome 2q telomere. Hum Mol Genet. 1994;3:1847–1853.
  • Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8:299–309.
  • Yehezkel S, Shaked R, Sagie S, et al. Characterization and rescue of telomeric abnormalities in ICF syndrome type I fibroblasts. Front Oncol. 2013;3:35.
  • Colombel M, Picard A. Prevention of bacillus calmette-guerin immunotherapy complications. Prog Urol. 2008;18:S105–S110.
  • Riethman H, Ambrosini A, Paul S. Human subtelomere structure and variation. Chromosome Res. 2005;13:505–515.
  • Walton EL, Francastel C, Velasco G. Maintenance of DNA methylation: Dnmt3b joins the dance. Epigenetics. 2011;6:1373–1377.
  • Simo-Riudalbas L, Diaz-Lagares A, Gatto S, et al. Genome-wide DNA methylation analysis identifies novel hypomethylated non-pericentromeric genes with potential clinical implications in ICF syndrome. PLoS One. 2015;10:e0132517.
  • Huang K, Wu Z, Liu Z, et al. Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells. Hum Mol Genet. 2014;23:6448–6457.
  • Ehrlich M, Sanchez C, Shao C, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41:253–271.
  • Sagie S, Edni O, Weinberg J, et al. Non-random length distribution of individual telomeres in immunodeficiency, centromeric instability and facial anomalies syndrome, type I. Hum Mol Genet. 2017;26:4244–4256.
  • Sullivan LL, Chew K, Sullivan BA. Alpha-satellite DNA variation and function of the human centromere. Nucleus. 2017;8:331–339.
  • Yehezkel S, Segev Y, Viegas-Pequignot E, et al. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17:2776–2789.
  • Chu HP, Cifuentes-Rojas C, Kesner B, et al. TERRA RNA antagonizes ATRX and protects telomeres. Cell. 2017;170:86–101 e116.
  • Sagie S, Toubiana S, Hartono SR, et al. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids. Nat Commun. 2017;8:14015.
  • Opresko PL, Shay JW. Telomere-associated aging disorders. Ageing Res Rev. 2017;33:52–66.
  • Gonzalo S, Garcia-Cao M, Fraga MF, et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol. 2005;7:420–428.
  • Garcia-Cao M, O'Sullivan R, Peters AH, et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36:94–99.
  • Garcia-Cao M, Gonzalo S, Dean D, et al. A role for the Rb family of proteins in controlling telomere length. Nat Genet. 2002;32:415–419.
  • Guan JZ, Guan WP, Maeda T, et al. Analysis of telomere length and subtelomeric methylation of circulating leukocytes in women with Alzheimer's disease. Aging Clin Exp Res. 2013;25:17–23.
  • Lee ME, Rha SY, Jeung HC, et al. Subtelomeric DNA methylation and telomere length in human cancer cells. Cancer Lett. 2009;281:82–91.
  • Gonzalo S, Jaco I, Fraga MF, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8:416–424.
  • Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88:557–579.
  • Kamae C, Imai K, Kato T, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–937.
  • Carpenter NJ, Filipovich A, Blaese RM, et al. Variable immunodeficiency with abnormal condensation of the heterochromatin of chromosomes 1, 9, and 16. J Pediatr. 1988;112:757–760.
  • Hu SC, Wang YB, Sun Q, et al. Clinical and genetic manifestations of immunodeficiency, centromeric instability, and facial anomalies syndrome: a case report and literature review. Zhonghua Er Ke Za Zhi. 2019;57:55–59.
  • Sterlin D, Velasco G, Moshous D, et al. Genetic, cellular and clinical features of ICF syndrome: a french national survey. J Clin Immunol. 2016;36:149–159.
  • Schuffenhauer S, Bartsch O, Stumm M, et al. DNA, FISH and complementation studies in ICF syndrome: DNA hypomethylation of repetitive and single copy loci and evidence for a trans acting factor. Hum Genet. 1995;96:562–571.
  • Tiepolo L, Maraschio P, Gimelli G, et al. Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet. 1979;51:127–137.
  • Shirohzu H, Kubota T, Kumazawa A, et al. Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet. 2002;112:31–37.
  • Bjorck EJ, Bui TH, Wijmenga C, et al. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20:828–831.
  • Rigolet M, Gregoire A, Lefort G, et al. Early prenatal diagnosis of ICF syndrome by mutation detection. Prenat Diagn. 2007;27:1075–1078.
  • Kaya N, Al-Muhsen S, Al-Saud B, et al. ICF syndrome in Saudi Arabia: immunological, cytogenetic and molecular analysis. J Clin Immunol. 2011;31:245–252.
  • Kutlug S, Ogur G, Yilmaz A, et al. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet.. 2016;170:3253–3257.
  • Conrad MA, Dawany N, Sullivan KE, et al. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:2252–2255.
  • Cerbone M, Wang J, Van der Maarel SM, et al. Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome, due to ZBTB24 mutations, presenting with large cerebral cyst. Am J Med Genet. 2012;158A:2043–2046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.