330
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Vasculitis and crescentic glomerulonephritis in a newly established congenic mouse strain derived from ANCA-associated vasculitis-prone SCG/Kj mice

, , , , , , , , , , , , , , , , , , & show all
Pages 208-219 | Received 09 Feb 2019, Accepted 18 Aug 2019, Published online: 02 Sep 2019

References

  • Jennette JC, Nachman PH. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 2017;12:1680–1691.
  • Pagnoux C. Updates in ANCA-associated vasculitis. Eur J Rheumatol. 2016;3:122–133.
  • Jarrot PA, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun Rev. 2016;15:704–713.
  • Sanders JS, Abdulahad WH, Stegeman CA, et al. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated vasculitis and potential targets for biologic treatment. Nephron Clin Pract. 2014;128:216–223.
  • Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol. 2014;10:463–473.
  • Merkel PA, Xie G, Monach PA, Vasculitis Clinical Research Consortium, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 2017;69:1054–1066.
  • Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65:2457–2468.
  • Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–223.
  • Nose M. Animal models of vasculitis. In: Hoffman GS, Weyand CM, Langford CA, Goronzy JJ., Hoboken, NJ, editors. Inflammatory diseases of blood vessels. 2nd ed. Oxford: Blackwell Publishing Ltd.; 2012. p. 115–125.
  • Kinjoh K, Kyogoku M, Good RA. Genetic selection for crescent formation yields mouse strain with rapidly progressive glomerulonephritis and small vessel vasculitis. Proc Natl Acad Sci USA. 1993;90:3413–3417.
  • Hamano Y, Tsukamoto K, Abe M, et al. Genetic dissection of vasculitis, myeloperoxidase-specific antineutrophil cytoplasmic autoantibody production, and related traits in Spontaneous Crescentic Glomerulonephritis-Forming/Kinjoh Mice. J Immunol. 2006;176:3662–3673.
  • Hamano Y, Abe M, Matsuoka S, et al. Susceptibility quantitative trait loci for pathogenic leucocytosis in SCG/Kj Mice, a spontaneously occurring crescentic glomerulonephritis and vasculitis model. Clin Exp Immunol. 2014;177:353–365.
  • Knight JG, Adams DD, Purves HD. The genetic contribution of the NZB mouse to the renal disease of the NZB x NZW hybrid. Clin Exp Immunol. 1977;28:352–358.
  • Suzuki K, Nagao T, Itabashi M, et al. A novel autoantibody against moesin in the serum of patients with MPO-ANCA-associated vasculitis. Nephrol Dial Transplant. 2014;29:1168–1177.
  • Jennette JC, Silva FG, Olson JL, et al. Primer on the pathologic classification and diagnosis of kidney disease In: Jennette JC, Silva FG, Olson JL, D’Agati VD, editors. Heptinstall’s pathology of the kidney. 7th ed. Philadelphia (PA): Wolters Kluwer; 2015. p. 91–117.
  • Morel L, Yu Y, Blenman KR, et al. Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm Genome. 1996;7:335–339.
  • Nagao T, Suzuki K, Utsunomiya K, et al. Direct activation of glomerular endothelial cells by anti-moesin activity of anti-myeloperoxidase antibody. Nephrol Dial Transplant. 2011;26:2752–2760.
  • Moyer CF, Strandberg JD, Reinisch CL. Systemic mononuclear-cell vasculitis in MRL/Mp-lpr/lpr mice. A histologic and immunocytochemical analysis. Am J Pathol. 1987;127:229–242.
  • Taniguchi Y, Ito MR, Mori S, et al. Role of macrophages in the development of arteritis in MRL strains of mice with a deficit in Fas-mediated apoptosis. Clin Exp Immunol. 1996;106:26–34.
  • Nakatsuru S, Terada M, Nishihara M, et al. Genetic dissection of the complex pathological manifestations of collagen disease in MRL/lpr mice. Pathol Int. 1999;49:974–982.
  • Yamada A, Miyazaki T, Lu LM, et al. Genetic basis of tissue specificity of vasculitis in MRL/lpr mice. Arthritis Rheum. 2003;48:1445–1451.
  • Specks U. Are animal models of vasculitis suitable tools? Curr Opin Rheumatol. 2000;12:11–19.
  • Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 2002;110:955–963.
  • Little MA, Smyth CL, Yadav R, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood. 2005;106:2050–2058.
  • Schreiber A, Xiao H, Falk RJ, et al. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol. 2006;17:3355–3364.
  • Ruth AJ, Kitching AR, Kwan RY, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol. 2006;17:1940–1949.
  • Harper JM, Healey DG, Thiru S, et al. Factors involved in the pathogenesis of neutrophilic vasculitis in MRL/Mp-lpr/lpr mice: a model for human microscopic angiitis. Autoimmunity. 1999;31:133–145.
  • Haas M, Eustace JA. Immune complex deposits in ANCA-associated crescentic glomerulonephritis: a study of 126 cases. Kidney Int. 2004;65:2145–2152.
  • Neumann I, Regele H, Kain R, et al. Glomerular immune deposits are associated with increased proteinuria in patients with ANCA-associated crescentic nephritis. Nephrol Dial Transplant. 2003;18:524–531.
  • Du Y, Sanam S, Kate K, et al. Animal models of lupus and lupus nephritis. Curr Pharm Des. 2015;21:2320–2349.
  • Turner-Stokes T, Wilson HR, Morreale M, et al. Positive antineutrophil cytoplasmic antibody serology in patients with lupus nephritis is associated with distinct histopathologic features on renal biopsy. Kidney Int. 2017;92:1223–1231.
  • Nasr SH, D’Agati VD, Park HR, et al. Necrotizing and crescentic lupus nephritis with antineutrophil cytoplasmic antibody seropositivity. Clin J Am Soc Nephrol. 2008;3:682–690.
  • Sen D, Isenberg DA. Antineutrophil cytoplasmic autoantibodies in systemic lupus erythematosus. Lupus. 2003;12:651–658.
  • Amann K. Do ANCAs make the difference in lupus nephritis? Kidney Int. 2017;92:1048–1050.
  • Jarrot PA, Chiche L, Hervier B, et al. Systemic lupus erythematosus and antineutrophil cytoplasmic antibody-associated vasculitis overlap syndrome in patients with biopsy-proven glomerulonephritis. Medicine (Baltimore). 2016;95:e3748.
  • O’Sullivan KM, Lo CY, Summers SA, et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 2015;88:1030–1046.
  • Söderberg D, Segelmark M. Neutrophil extracellular traps in ANCA-associated vasculitis. Front Immunol. 2016;7:256.
  • Appel GB, Pirani CL, D’Agati V. Renal vascular complications of systemic lupus erythematosus. J Am Soc Nephrol. 1994;4:1499–1515.
  • Morel L, Blenman KR, Croker BP, et al. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA. 2001;98:1787–1792.
  • Haywood ME, Rogers NJ, Rose SJ, et al. Dissection of BXSB lupus phenotype using mice congenic for chromosome 1 demonstrates that separate intervals direct different aspects of disease. J Immunol. 2004;173:4277–4285.
  • Jørgensen TN, Alfaro J, Enriquez HL, et al. Development of murine lupus involves the combined genetic contribution of the SLAM and FcgammaR intervals within the Nba2 autoimmune susceptibility locus. J Immunol. 2010;184:775–786.
  • Morel L. Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol. 2010;6:348–357.
  • Cuda CM, Li S, Liang S, et al. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans. J Immunol. 2012;188:604–614.
  • Rahman ZS, Niu H, Perry D, et al. Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun. 2007;8:604–612.
  • Horvei KD, Pedersen HL, Fismen S, et al. Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease. PLoS One. 2017;12:e0188863.
  • Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–723.
  • Wandstrat AE, Nguyen C, Limaye N, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity. 2004;21:769–780.
  • López-Hoyos M, Carrió R, Merino R, et al. Constitutive expression of bcl-2 in B cells causes a lethal form of lupus like autoimmune disease after induction of neonatal tolerance to H-2b alloantigens. J Exp Med. 1996;183:2523–2531.
  • Klein A, Polliack A, Gafter-Gvili A. Systemic lupus erythematosus and lymphoma: incidence, pathogenesis and biology. Leuk Res. 2018;75:45–49.
  • Hou WS, Van Parijs L. A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat Immunol. 2004;5:583–589.
  • Naumovski L, Cleary ML. Bcl2 inhibits apoptosis associated with terminal differentiation of HL-60 myeloid leukemia cells. Blood. 1994;83:2261–2267.
  • Zamani MR, Aslani S, Salmaninejad A, et al. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41.
  • Slot MC, Sokolowska MG, Savelkouls KG, et al. Immunoregulatory gene polymorphisms are associated with ANCA-related vasculitis. Clin Immunol. 2008;128:39–45.
  • Johansson M, Arlestig L, Möller B, et al. Association of a PDCD1 polymorphism with renal manifestations in systemic lupus erythematosus. Arthritis Rheum. 2005;52:1665–1669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.