225
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Long non coding RNA H19: An emerging therapeutic target in fibrosing diseases

, , , &
Pages 1-7 | Received 26 Jun 2019, Accepted 15 Oct 2019, Published online: 24 Oct 2019

References

  • Song K, Li Q, Yin XY, et al. Hydrogen sulfide: a therapeutic candidate for fibrotic disease? Oxid Med Cell Longev. 2015;2015:1.
  • Wernig G, Chen SY, Cui L, et al. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114(18):4757–4762.
  • Peng L, Agogo GO, Guo J, et al. Substance P and fibrotic diseases. Neuropeptides. 2019;76:101941.
  • McVicker BL, Bennett RG. Novel Anti-fibrotic Therapies. Front Pharmacol. 2017;8:318.
  • Asano Y. Systemic sclerosis. J Dermatol. 2018;45(2):128–138.
  • Yang Z, Jiang S, Shang J, et al. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 2019;52:17–31.
  • Tang PM, Zhang YY, Lan HY. LncRNAs in TGF-β-Driven Tissue Fibrosis. Noncoding RNA. 2018;4(4):pii: E26.
  • Dolcino M, Tinazzi E, Puccetti A, et al. In systemic sclerosis, a unique long non coding RNA regulates genes and pathways involved in the three main features of the disease (Vasculopathy, Fibrosis and Autoimmunity) and in carcinogenesis. J Clin Med. 2019;8(3):320.
  • Zhang Y, Luo G, Zhang Y, et al. Critical effects of long non-coding RNA on fibrosis diseases. Exp Mol Med. 2018;50(1):e428.
  • Gutschner T, Diederichs S. The hallmarks of cancer: a long non‐coding RNA point of view. RNA Biol. 2012;9(6):703–719.
  • Smits G, Mungall AJ, Griffiths-Jones S, et al. Conservation of the H19 noncoding RNA and H19-IGF2imprinting mechanism in therians. Nat Genet. 2008;40(8):971–976.
  • Tabano S, Colapietro P, Cetin I, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–324.
  • Sun B, Ding Y, Jin X, et al. Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c. Biosci Rep. 2019;39(5):pii: BSR20182394.
  • Hou J, Wang L, Wu Q, et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR- 199a -5p. Stem Cell Res Ther. 2018;9(1):109.
  • Wang N, Hou M, Zhan Y, et al. LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19. J Cell Biochem. 2019;120(9):15083–15088.
  • Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351(6322):153–155.
  • Uehara T, Ainslie GR, Kutanzi K, et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci. 2013;132(1):53–63.
  • Yang JJ, Liu LP, Tao H, et al. MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology. 2016;359–360:39–46.
  • Tao H, Cao W, Yang JJ, et al. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol. 2016;25(5):381–389.
  • Xie H, Xue JD, Chao F, et al. Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget. 2016;7(32):51473–51481.
  • Wang X, Cheng Z, Dai L, et al. Knockdown of lncRNA H19 represses the progress of pulmonary fibrosis through the TGF-β/Smad3 pathway by regulating miR-140. Mol Cell Biol. 2019;39(12):pii: e00143–19.
  • Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.
  • Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659–665.
  • Matouk I, Raveh E, Ohana P, et al. The increasing complexity of the oncofetal h19 gene locus: functional dissection and therapeutic intervention. Int J Mol Sci. 2013;14(2):4298–4316.
  • Park KS, Mitra A, Rahat B, et al. Loss of imprinting mutations define both distinct and overlapping roles for misexpression of IGF2 and of H19 lncRNA. Nucleic Acids Res. 2017;45(22):12766–12779.
  • Yu L, Chen M, Zhao D, et al. The H19 gene imprinting in normal pregnancy and pre- eclampsia. Placenta. 2009;30(5):443–447.
  • Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 2014;28(5):491–501.
  • Martinet C, Monnier P, Louault Y, et al. H19 controls reactivation of the imprinted gene network during muscle regeneration. Development. 2016;143(6):962–971.
  • Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med. 2012;90(10):1185–1195.
  • Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13(3):313–316.
  • Li X, Wang H, Zhang Y, et al. Overexpression of lncRNA H19 changes basic characteristics and affects immune response of bovine mammary epithelial cells. PeerJ. 2019;7:e6715.
  • Cipriani S, Carino A, Masullo D, et al. Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis. Sci Rep. 2017;7(1):41055.
  • Li X, Liu R, Yang J, et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology. 2017;66(3):869–884.
  • Zhang L, Yang Z, Huang W, et al. H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis. Cell Death Dis. 2019;10(3):168.
  • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.
  • Song Y, Liu C, Liu X, et al. H19 promotes cholestatic liver fibrosis by preventing ZEB1‐mediated inhibition of EpCAM. Hepatology. 2017;66(4):1183–1196.
  • Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(46):E3186–95.
  • Ghazal S, McKinnon B, Zhou J, et al. H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med. 2015;7(8):996–1003.
  • Yang W, Li X, Qi S, et al. lncRNA H19 is involved in TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway. PeerJ. 2017;5:e3950.
  • Xiao Y, Liu R, Li X, et al. Long non-coding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology. 2019.
  • Kallen AN, Zhou X-B, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–112.
  • Zhu J, Luo Z, Pan Y, et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes. J Cell Physiol. 2019;234(6):9698–9710.
  • Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209–218.
  • Yang JJ, She Q, Yang Y, et al. DNMT1 controls LncRNA H19/ERK signal pathway in hepatic stellate cell activation and fibrosis. Toxicol Lett. 2018;295:325–334.
  • Liu R, Li X, Zhu W, et al. Cholangiocyte-derived exosomal LncRNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology. 2019;70(4):1317–1335.
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574.
  • Huang ZW, Tian LH, Yang B, et al. Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol. 2017;36(9):759–766.
  • Prasse A, Holle JU, Müller-Quernheim J. Pulmonary fibrosis. Internist. 2010;51(1):6–13.
  • Tang Y, He R, An J, et al. The effect of H19-miR-29b interaction on bleomycin-induced mouse model of idiopathic pulmonary fibrosis. Biochem Biophys Res Commun. 2016;479(3):417–423.
  • Lu Q, Guo Z, Xie W, et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 Axis. Inflammation. 2018;41(3):896–903.
  • Zhou D, Liu Y. Renal fibrosis in 2015: Understanding the mechanisms of kidney fibrosis[J]. Nat Rev Nephrol. 2016;12(2):68–70.
  • Jin J, Zhai HF, Jia ZH, et al. Long non-coding RNA HOXA11-AS induces Type I Collagen synthesis to keloid formation via sponging miR-124-3p and activating Smad5 Signaling. Am J Physiol Cell Physiol. 2019.
  • Huang H, Fu S, Liu D. Detection and analysis of the hedgehog signaling Pathway-Related long Non-Coding RNA (lncRNA) expression profiles in keloid. Med Sci Monit. 2018;24:9032–9044.
  • Yuan C, Bu W, Li L, et al. Long non-coding RNA expression profiling in the lesional tissue and derived fibroblasts of keloid. Postepy Dermatol Alergol. 2017;34(6):587–600.
  • Zhang J, Liu CY, Wan Y, et al. Long non-coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring. Oncol Lett. 2016;12(4):2835–2839.
  • Mann CJ, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1(1):21.
  • Morgoulis D, Berenstein P, Cazacu S, et al. sPIF promotes myoblast differentiation and utrophin expression while inhibiting fibrosis in Duchenne muscular dystrophy via the H19/miR-675/let-7 and miR-21 pathways. Cell Death Dis. 2019;10(2):82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.