1,565
Views
55
CrossRef citations to date
0
Altmetric
Review Articles

Th1, Th2, and Th17 cytokines in systemic lupus erythematosus

, &
Pages 8-20 | Received 30 Apr 2019, Accepted 12 Nov 2019, Published online: 27 Nov 2019

References

  • Gaber W, Sayed S, Rady HM, et al. Interleukin-27 and its relation to disease parameters in SLE patients. Egypt Rheumatol. 2012;34(3):99–105.
  • Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017;13(9):538–547.
  • Fu SM, Dai C, Zhao Z, et al. Anti-dsDNA Antibodies are one of the many autoantibodies in systemic lupus erythematosus. F1000Res. 2015;4:939.
  • Pisetsky DS. Anti-DNA antibodies–quintessential biomarkers of SLE. Nat Rev Rheumatol. 2016;12(2):102–110.
  • Qi S, Chen Q, Xu D, et al. Clinical application of protein biomarkers in lupus erythematosus and lupus nephritis. Lupus. 2018;27(10):1582–1590.
  • Tenbrock K, Juang YT, Kyttaris VC, et al. Altered signal transduction in SLE T cells. Rheumatology (Oxford). 2007;46(10):1525–1530.
  • Sanz I. Rationale for B cell targeting in SLE. Semin Immunopathol. 2014;36(3):365–375.
  • Jackson SW, Kolhatkar NS, Rawlings DJ. B cells take the front seat: dysregulated B cell signals orchestrate loss of tolerance and autoantibody production. Curr Opin Immunol. 2015;33:70–77.
  • Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest. 2015;125(6):2220–2227.
  • Zhang J, Jacobi AM, Wang T, et al. Polyreactive autoantibodies in systemic lupus erythematosus have pathogenic potential. J Autoimmun. 2009;33(3–4):270–274.
  • Malik M, Arora P, Sachdeva R, et al. Elucidation of the potential disease-promoting influence of IgM apoptotic cell-reactive antibodies in lupus. Lupus. 2016;25(7):684–698.
  • Sigdel KR, Duan L, Wang Y, et al. Serum cytokines Th1, Th2, and Th17 expression profiling in active lupus nephritis-IV: from a southern Chinese Han population. Mediators Inflamm. 2016;2016:1.
  • Guimaraes PM, Scavuzzi BM, Stadtlober NP, et al. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol. 2017;95:824–831.
  • Ferreira VL, Borba HHL, Bonetti ADF, et al. Cytokines and interferons: types and functions. In: Khan WA, editor. Autoantibodies and cytokines. London: IntechOpen; 2018.
  • Jandl C, King C. Cytokines in the germinal center niche. Antibodies. 2016;5(1):5.
  • Holdsworth SR, Gan PY. Cytokines: names and numbers you should care about. Clin J Am Soc Nephrol. 2015;10(12):2243–2254.
  • Zen M, Ghirardello A, Iaccarino L, et al. Hormones, immune response, and pregnancy in healthy women and SLE patients. Swiss Med Wkly. 2010;140(13–14):187–201.
  • Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43(3):402–407.
  • Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64(2):477–485.
  • Crow MK, Kirou KA, Niewold TB. Cytokines in lupus. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus and related syndromes. Amsterdam, Netherlands: Elsevier; 2019. p. 137–152.
  • Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev. 2018;17(1):44–52.
  • Mohamed AA, Gheita TA. Interferons, B cells and neutrophils: innate and adaptive allies in systemic lupus erythematosus. J Rheumatol Arthritic Dis. 2018;3(2):1.
  • Garcia-Posadas L, Hodges RR, Li D, et al. Interaction of IFN-gamma with cholinergic agonists to modulate rat and human goblet cell function. Mucosal Immunol. 2016;9(1):206–217.
  • Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4 + CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–1579.
  • Heiler S, Lotscher J, Kreuzaler M, et al. Prophylactic and therapeutic effects of interleukin-2 (IL-2)/Anti-IL-2 complexes in systemic lupus erythematosus-like chronic graft-versus-host disease. Front Immunol. 2018;9:656.
  • Borriello F, Iannone R, Somma SD, et al. GM-CSF and IL-3 modulate human monocyte TNF-alpha production and renewal. Front Immunol. 2016;7:680.
  • Borriello F, Galdiero MR, Varricchi G, et al. Innate immune modulation by GM-CSF and IL-3 in health and disease. Int J Mol Sci. 2019;20:834.
  • Ifergan I, Davidson TS, Kebir H, et al. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity. J Autoimmun. 2017;84:1–11.
  • Bhattacharya P, Thiruppathi M, Elshabrawy HA, et al. GM-CSF: an immune modulatory cytokine that can suppress autoimmunity. Cytokine. 2015;75(2):261–271.
  • Al-Kholy W, Elsaid A, Sleem A, et al. TNF-alpha - 308 G > A and IFN-gamma + 874 A > T gene polymorphisms in Egyptian patients with lupus erythematosus. Meta Gene. 2016;9:137–141.
  • Tahernia L, Namazi S, Rezaei N, et al. Cytokines in systemic lupus erythematosus: their role in pathogenesis of disease and possible therapeutic opportunities. Rheum Res. 2017;2(1):1–9.
  • Buhrmann C, Yazdi M, Popper B, et al. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients. 2018;10(7):888.
  • Buhrmann C, Yazdi M, Popper B, et al. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it. Exp Biol Med (Maywood). 2019;244:1–12.
  • de Matos LG, Cândido EB, Vidigal PV, et al. Association between toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms. Tumori J. 2017;103(1):81–86.
  • Bosurgi L, Cao YG, Cabeza-Cabrerizo M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356(6342):1072–1076.
  • Xia F, Deng C, Jiang Y, et al. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy. 2018;14(3):450–464.
  • Bagnasco D, Ferrando M, Varricchi G, et al. Anti-interleukin 5 (IL-5) and IL-5Ra biological drugs: efficacy, safety, and future perspectives in severe eosinophilic asthma. Front Med (Lausanne). 2017;4:135.
  • Liddament M, Husten J, Estephan T, et al. Higher binding affinity and in vitro potency of reslizumab for interleukin-5 compared with mepolizumab. Allergy Asthma Immunol Res. 2019;11(2):291–298.
  • Roufosse F. Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. Front Med (Lausanne). 2018;5:49.
  • Wallace DJ, Strand V, Merrill JT, et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial. Ann Rheum Dis. 2017;76(3):534–542.
  • Katkam SK, Rajasekhar L, Kumaraswami K, et al. Association of IL -6 -174 G > C polymorphism with the risk of SLE among south Indians: evidence from case-control study and meta-analysis. Lupus. 2017;26(14):1491–1501.
  • Godsell J, Rudloff I, Kandane-Rathnayake R, et al. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep. 2016;6(1):34604.
  • Mohammadi S, Saghaeian Jazi M, Zare Ebrahimabad M, et al. Interleukin 10 gene promoter polymorphisms (rs1800896, rs1800871 and rs1800872) and haplotypes are associated with the activity of systemic lupus erythematosus and IL10 levels in an Iranian population. Int J Immunogenet. 2019;46(1):20–30.
  • Wang X, Wong K, Ouyang W, et al. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol. 2019;11(2):a028548.
  • Mao YM, Zhao CN, Leng J, et al. Interleukin-13: a promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev. 2019;45:9–23.
  • Tripp CS, Cuff C, Campbell AL, et al. RPC4046, a novel anti-interleukin-13 antibody, blocks IL-13 binding to IL-13 alpha1 and alpha2 receptors: a randomized, double-blind, placebo-controlled, dose-escalation first-in-human study. Adv Ther. 2017;34(6):1364–1381.
  • Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75(1):25–37.
  • Gwiggner M, Martinez-Nunez R, Whiteoak S, et al. MicroRNA-31 and MicroRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1. Genes. 2018;9(2):85.
  • Gotovac JR, Fujihara KM, Phillips WA, et al. TGF-beta signaling and its targeted therapy in gastrointestinal cancers. Discov Med. 2018;26(142):103–112.
  • Esebanmen GE, Langridge WH. The role of TGF-beta signaling in dendritic cell tolerance. Immunol Res . 2017;65(5):987–994.
  • Correll KA, Edeen KE, Zemans RL, et al. TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type II cells. Biochem Biophys Res Commun. 2018;499(4):843–848.
  • Vogel LA, Lester TL, Van Cleave VH, et al. Inhibition of murine B1 lymphocytes by interleukin‐12. Eur J Immunol. 1996;26(1):219–223.
  • Larosa M, Zen M, Gatto M, et al. IL-12 and IL-23/Th17 axis in systemic lupus erythematosus. Exp Biol Med (Maywood). 2019;244(1):42–51.
  • Chen D, Chen Y, Wen M, et al. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus. 2012;21(13):1385–1396.
  • Eagar TN, Miller SD. Helper T-cell subsets and control of the inflammatory response. In: Rich RR, Fleisher TA, Shearer WT, et al., editors. Clinical immunology. 5th ed. Amsterdam, Netherlands: Elsevier; 2019. p. 235–245. e231.
  • Lourenco EV, La Cava A. Cytokines in systemic lupus erythematosus. Curr Mol Med. 2009;9(3):242–254.
  • Obermoser G, Pascual V. The interferon-alpha signature of systemic lupus erythematosus. Lupus. 2010;19(9):1012–1019.
  • Ito T, Wang YH, Liu YJ. Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9. Springer Semin Immunopathol. 2005;26(3):221–229.
  • Lövgren T, Eloranta ML, Kastner B, et al. Induction of interferon‐α by immune complexes or liposomes containing systemic lupus erythematosus autoantigen–and Sjögren's syndrome autoantigen–associated RNA. Arthritis Rheum. 2006;54:1917–1927.
  • Schoenemeyer A, Barnes BJ, Mancl ME, et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem. 2005;280(17):17005–17012.
  • Hoshino K, Sugiyama T, Matsumoto M, et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature. 2006;440(7086):949.
  • Kawai T, Sato S, Ishii KJ, et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5(10):1061.
  • Löseke S, Grage‐Griebenow E, Heine H, et al. In vitro‐generated viral double‐stranded RNA in contrast to polyinosinic: polycytidylic acid induces interferon‐α in human plasmacytoid dendritic cells. Scand J Immunol. 2006;63:264–274.
  • Kennedy WP, Maciuca R, Wolslegel K, et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med. 2015;2(1):e000080.
  • Abdel Galil SM, El-Shafey AM, Abdul-Maksoud RS, et al. Interferon alpha gene expression and serum level association with low vitamin D levels in Egyptian female patients with systemic lupus erythematosus. Lupus. 2018;27(2):199–209.
  • Petri M, Fu W, Ranger A, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics. 2019;12(1):4.
  • Catalina MD, Bachali P, Geraci NS, et al. Gene expression analysis delineates the potential roles of multiple interferons in systemic lupus erythematosus. Commun Biol. 2019;2(1):140.
  • Torell F, Eketjall S, Idborg H, et al. Cytokine profiles in autoantibody defined subgroups of systemic lupus erythematosus. J Proteome Res. 2019;18:1208–1217.
  • Pollard KM, Cauvi DM, Toomey CB, et al. Interferon-γ and systemic autoimmunity. Discov Med. 2013;16(87):123.
  • Baudino L, da Silveira SA, Nakata M, et al. Molecular and cellular basis for pathogenicity of autoantibodies: lessons from murine monoclonal autoantibodies. Springer Semin Immunopathol. 2006;28(2):175–184.
  • Lee SK, Silva DG, Martin JL, et al. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity. 2012;37(5):880–892.
  • Kim K, Cho SK, Sestak A, et al. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum Dis. 2010;69(6):1247–1250.
  • Hagberg N, Joelsson M, Leonard D, et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-gamma production in T cells from patients with SLE. Ann Rheum Dis. 2018;77(7):1070–1077.
  • Dufour A, Bellac CL, Eckhard U, et al. C-terminal truncation of IFN-gamma inhibits proinflammatory macrophage responses and is deficient in autoimmune disease. Nat Commun. 2018;9(1):2416.
  • Kokic V, Martinovic Kaliterna D, Radic M, et al. Association between vitamin D, oestradiol and interferon-gamma in female patients with inactive systemic lupus erythematosus: a cross-sectional study. J Int Med Res. 2018;46(3):1162–1171.
  • Domeier PP, Chodisetti SB, Soni C, et al. IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med. 2016;213(5):715–732.
  • Comte D, Karampetsou MP, Kis-Toth K, et al. Brief report: CD4+ T cells from patients with systemic lupus erythematosus respond poorly to exogenous interleukin-2. Arthritis Rheumatol. 2017;69(4):808–813.
  • Humrich JY, Riemekasten G. Low-dose interleukin-2 therapy for the treatment of systemic lupus erythematosus. Curr Opin Rheumatol. 2019;31(2):208–212.
  • Shao M, He J, Zhang R, et al. Interleukin-2 deficiency associated with renal impairment in systemic lupus erythematosus. J Interferon Cytokine Res. 2019;39(2):117–124.
  • Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol . 2005;6(11):1142.
  • D’Cruz LM, Klein L. Development and function of agonist-induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005;6:1152.
  • Setoguchi R, Hori S, Takahashi T, et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–735.
  • Liu X, Jing X, Wu X, et al. OP0043 The number of circulating regulatory t cells is reduced and low-dose il-2 selectively stimulates its proliferation in patients with systemic lupus erythematosus. Ann Rheum Dis. 2017;76:69.
  • Dai H, He F, Tsokos GC, et al. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol. 2017;199(3):903–910.
  • Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175(12):8392–8400.
  • Suen JL, Li HT, Jong YJ, et al. Altered homeostasis of CD4+ FoxP3+ regulatory T‐cell subpopulations in systemic lupus erythematosus. Immunology. 2009;127(2):196–205.
  • Bonelli M, von Dalwigk K, Savitskaya A, et al. Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis. Ann Rheum Dis. 2007;67(5):664–671.
  • Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2015;45(2):344–355.
  • Jones MB, Alvarez CA, Johnson JL, et al. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One. 2019;14(5):e0216893.
  • Rosenzwajg M, Lorenzon R, Cacoub P, et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. 2019;78(2):209–217.
  • von Spee-Mayer C, Siegert E, Abdirama D, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75(7):1407–1415.
  • Fiehn C, Wermann M, Pezzutto A, et al. Plasma GM-CSF concentrations in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropathy. Z Rheumatol. 1992;51(3):121–126.
  • López P, Rodríguez‐Carrio J, Martínez A, et al. Senescent profile of angiogenic T cells from systemic lupus erythematosus patients. J Leukoc Biol. 2016;99:405–412.
  • López P, De Paz B, Rodríguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6(1):24072.
  • Chiewchengchol D, Midgley A, Sodsai P, et al. The protective effect of GM-CSF on serum-induced neutrophil apoptosis in juvenile systemic lupus erythematosus patients. Clin Rheumatol. 2015;34(1):85–91.
  • Derouet M, Thomas L, Cross A, et al. Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J Biol Chem. 2004;279(26):26915–26921.
  • Willeke P, Schluter B, Schotte H, et al. Increased frequency of GM-CSF secreting PBMC in patients with active systemic lupus erythematosus can be reduced by immunoadsorption. Lupus. 2004;13(4):257–262.
  • Yoshio T, Okamoto H, Kurasawa K, et al. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25(9):997–1003.
  • Lu C, Li J. Effect of G-CSF and GM-CSF on expression of TNF-alpha mRNA and CD69 and secretion of IgG in peripheral blood mononuclear cells from systemic lupus erythematosus patients. Zhongguo Shi Yan Xue ye Xue za Zhi. 2002;10(6):531–534.
  • Enzler T, Gillessen S, Manis JP, et al. Deficiencies of GM-CSF and interferon γ link inflammation and cancer. J Exp Med. 2003;197(9):1213–1219.
  • Ahmed HH, Taha FM, Darweesh HES, et al. Association between TNF promoter− 308 G > A and LTA 252 A > G polymorphisms and systemic lupus erythematosus. Mol Biol Rep. 2014;41(4):2029–2036.
  • Postal M, Appenzeller S. The role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine. 2011;56(3):537–543.
  • Ma CY, Jiao YI, Zhang J, et al. Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN-alpha and TNF-alpha in systemic lupus erythematosus. Rheumatol Int. 2012;32(2):395–402.
  • Chatzidakis I, Mamalaki C. T cells as sources and targets of TNF: implications for immunity and autoimmunity. In: Kollias G, Sfikakis PP, editors. TNF pathophysiology. Basel, Switzerland: Karger Publishers; 2010. p. 105–118.
  • Rageh IM, Sharaawy AA, Fouda AI, et al. Tumor necrosis factor-α promoter gene polymorphism (308 G/A) in the Egyptian patients with systemic lupus erythematosus. Benha Med J. 2017;34:5.
  • Tahghighi F, Ziaee V, Moradinejad MH, et al. Tumor necrosis factor-alpha single nucleotide polymorphisms in juvenile systemic lupus erythematosus. Hum Immunol. 2015;76(8):533–536.
  • Umare VD, Pradhan VD, Rajadhyaksha AG, et al. Impact of TNF-α and LTα gene polymorphisms on genetic susceptibility in Indian SLE patients. Hum Immunol. 2017;78(2):201–208.
  • Brennan DC, Yui MA, Wuthrich RP, et al. Tumor necrosis factor and IL-1 in New Zealand Black/White mice. Enhanced gene expression and acceleration of renal injury. J. Immunol. 1989;143(11):3470–3475.
  • Kontoyiannis D, Kollias G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol. 2000;30(7):2038–2047.
  • Zhu LJ, Landolt-Marticorena C, Li T, et al. Altered expression of TNF-α signaling pathway proteins in systemic lupus erythematosus. J Rheumatol. 2010;37(8):1658–1666.
  • Nelms K, Keegan AD, Zamorano J, et al. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17(1):701–738.
  • Yu H, Liu P, Lin Y, et al. Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus. 2010;19(10):1219–1228.
  • Elewa EA, Zakaria O, Mohamed EI, et al. The role of interleukins 4, 17 and interferon gamma as biomarkers in patients with Systemic Lupus Erythematosus and their correlation with disease activity. Egypt Rheumatol. 2014;36(1):21–27.
  • Mohammadoo-Khorasani M, Salimi S, Tabatabai E, et al. Interleukin-1beta (IL-1beta) & IL-4 gene polymorphisms in patients with systemic lupus erythematosus (SLE) & their association with susceptibility to SLE. Indian J Med Res. 2016;143:591–596.
  • Mohsen IH. Study polymorphisms of IL-4 gene using PCR-SSCP technique in Iraqi systemic lupus erthymatous patients. J Pharm Sci Res. 2018;10:613–614.
  • Deocharan B, Marambio P, Edelman M, et al. Differential effects of interleukin-4 in peptide induced autoimmunity. Clin Immunol. 2003;108(2):80–88.
  • Carneiro JRM, Fuzii HT, Kayser C, et al. IL-2, IL-5, TNF-α and IFN-γ mRNA expression in epidermal keratinocytes of systemic lupus erythematosus skin lesions. Clinics. 2011;66(1):77–82.
  • Zhu H, Mi W, Luo H, et al. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Res Ther. 2016;18:162.
  • Timóteo RP, Micheli DC, Teodoro RB, et al. Characterization of inflammatory markers associated with systemic lupus erythematosus patients undergoing treatment. Rev Bras Reumatol. 2016;56(6):497–503.
  • Wen X, Zhang D, Kikuchi Y, et al. Transgene‐mediated hyper‐expression of IL‐5 inhibits autoimmune disease but increases the risk of B cell chronic lymphocytic leukemia in a model of murine lupus. Eur J Immunol. 2004;34(10):2740–2749.
  • Jones BE, Maerz MD, Buckner JH. IL-6: a cytokine at the crossroads of autoimmunity. Curr Opin Immunol. 2018;55:9–14.
  • Mellor ‐Pita S, Citores MJ, Castejon R, et al. Monocytes and T lymphocytes contribute to a predominance of interleukin 6 and interleukin 10 in systemic lupus erythematosus. Cytometry B Clin Cytom. 2009;76:261–270.
  • Thanadetsuntorn C, Ngamjanyaporn P, Setthaudom C, et al. The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus. Sci Rep. 2018;8(1):2620.
  • Umare V, Nadkarni A, Nadkar M, et al. Do high sensitivity C-reactive protein and serum interleukin-6 levels correlate with disease activity in systemic lupus erythematosuspatients? J Postgrad Med. 2017;63:92–95.
  • Bashlakova N, Tyabut T, Buglova A. AB0048 Antiphospholipid antibodies, interleukin-6 and tumor necrosis factor-α in atherosclerotic process in patients with rheumatoid arthritis and systemic lupus erythematosus. London: BMJ Publishing Group Ltd; 2017.
  • Wan Asyraf WA, Mohd Shahrir MS, Asrul W, et al. The association between serum prolactin levels and interleukin-6 and systemic lupus erythematosus activity. Reumatismo. 2018;70(4):241–250.
  • Cai XY, Lu Y, Tang C, et al. Effect of interleukin-6 promoter DNA methylation on the pathogenesis of systemic lupus erythematosus. Zhonghua Yi Xue Za Zhi. 2017;97(19):1491–1495.
  • Stannard JN, Reed TJ, Myers E, et al. Lupus skin is primed for IL-6 inflammatory responses through a keratinocyte-mediated autocrine type I interferon loop. J Invest Dermatol. 2017;137(1):115–122.
  • Cash H, Relle M, Menke J, et al. Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: the IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. J Rheumatol. 2010;37(1):60–70.
  • Grau Garcia E, Ortiz-Sanjuan F, Fernandez Matilla M, et al. Systemic lupus erythematosus patients with positives autoantibodies with remission or low activity exhibit both lower interferon alpha and interleukin-10 levels. Lupus. 2018;5(1):PS2:30.
  • Grammatikos AP, Kyttaris VC, Kis-Toth K, et al. AT cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clin Immunol. 2014;150(2):192–200.
  • Ouyang W, Rutz S, Crellin NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29(1):71–109.
  • Dörner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11:247.
  • Peng H, Wang W, Zhou M, et al. Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1255–1266.
  • Hayashi T. Therapeutic strategies for SLE involving cytokines: mechanism-oriented therapies especially IFN. BioMed Res Int. 2010;2010:19.
  • Bassiouny M, Sonbol A, Eissa H, et al. CD4+ Foxp3+ T cells, interleukin-35 (IL-35) and IL-10 in systemic lupus erythematosus patients: relation to disease activity. Egypt Rheumatol. 2018;41(3):209–214.
  • Zhou H, Hu B, Huang N, et al. Aberrant T cell subsets and cytokines expression profile in systemic lupus erythematosus. Clin Rheumatol. 2018;37(9):2405–2413.
  • Llorente L, Zou W, Levy Y, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med. 1995;181(3):839–844.
  • Yuan Y, Wang X, Ren L, et al. Associations between interleukin-10 gene polymorphisms and systemic lupus erythematosus risk: a meta-analysis with trial sequential analysis. Clin Exp Rheumatol. 2018;37:242–253.
  • Teichmann LL, Kashgarian M, Weaver CT, et al. B cell-derived IL-10 does not regulate spontaneous systemic autoimmunity in MRL. Faslpr mice. J Immunol. 2012;188(2):678–685.
  • May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine. 2015;75(1):89–116.
  • Arkatkar T, Du SW, Jacobs HM, et al. B cell–derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J Exp Med. 2017;214(11):3207–3217.
  • Spadaro A, Rinaldi T, Riccieri V, et al. Interleukin-13 in autoimmune rheumatic diseases: relationship with the autoantibody profile. Clin Exp Rheumatol. 2002;20(2):213–216.
  • Morimoto S, Tokano Y, Kaneko H, et al. The increased interleukin-13 in patients with systemic lupus erythematosus: relations to other Thl-, Th2-related cytokines and clinical findings. Autoimmunity. 2001;34(1):19–25.
  • Zusen X, Yanlei C. Determination of serum interleukin-13 and nerve growth factor in patients with systemic lupus erythematosus and clinical significance. J Huazhong Univ Sci Technol Med Sci. 2005;25(3):360–361.
  • Brugos B, Vincze Z, Sipka S, et al. Serum and urinary cytokine levels of SLE patients. Pharmazie. 2012;67:411–413.
  • Wang R, Lu YL, Huang HT, et al. Association of interleukin 13 gene polymorphisms and plasma IL 13 level with risk of systemic lupus erythematosus. Cytokine. 2018;104:92–97.
  • Becker-Merok A, Eilertsen GØ, Nossent JC. Levels of transforming growth factor-β are low in systemic lupus erythematosus patients with active disease. J Rheumatol. 2010;37(10):2039–2045.
  • El Menyawi M, Fawzy M, Habib M, et al. Serum transforming growth factor-beta 1 level in Egyptian systemic lupus erythematosus patients. Arch Rheumatol. 2018;33(3):358.
  • Jin T, Almehed K, Carlsten H, et al. Decreased serum levels of TGF-β1 are associated with renal damage in female patients with systemic lupus erythematosus. Lupus. 2012;21(3):310–318.
  • Manolova I, Gerenova J, Ivanova M. Serum levels of transforming growth factor-β1 (TGF-β1) in patients with systemic lupus erythematosus and Hashimoto's thyroiditis. Eur Cytokine Netw. 2013;24:69–74.
  • Raymond WD, Eilertsen GØ, Nossent J. Principal component analysis reveals disconnect between regulatory cytokines and disease activity in systemic lupus erythematosus. Cytokine. 2019;114:67.
  • Metawie SA, ElRefai RM, ElAdle SS, et al. Transforming growth factor-β1 in systemic lupus erythematosus patients and its relation to organ damage and disease activity. Egypt Rheumatol. 2015;37(4):S49–S54.
  • Salam SMA, Saleh SH, El-Shahawy EE, et al. Assessment of plasma and urinary transforming growth factor beta 1 (TGF-β1) in children with lupus nephritis. Egypt J Pediatr Allergy Immunol. 2011;9:21–27.
  • Yuan Y, Yang M, Wang K, et al. Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Res Ther. 2017;19:70.
  • Susianti H, Iriane VM, Dharmanata S, et al. Analysis of urinary TGF-β1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis. Pathophysiology. 2015;22(1):65–71.
  • Torabinejad S, Mardani R, Habibagahi Z, et al. Urinary monocyte chemotactic protein-1 and transforming growth factor-β in systemic lupus erythematosus. Indian J Nephrol. 2012;22(1):5.
  • Singh RR, Ebling FM, Albuquerque DA, et al. Induction of autoantibody production is limited in nonautoimmune mice. J Immunol. 2002;169(1):587–594.
  • Rekik R, Khanfir MS, Larbi T, et al. Impaired TGF-β signaling in patients with active systemic lupus erythematosus is associated with an overexpression of IL-22. Cytokine. 2018;108:182–189.
  • Saxena V, Lienesch DW, Zhou M, et al. Dual roles of immunoregulatory cytokine TGF-β in the pathogenesis of autoimmunity-mediated organ damage. J Immunol. 2008;180(3):1903–1912.
  • Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015;72(2):146–153.
  • Schmidt T, Luebbe J, Paust H-J, et al. Mechanisms and functions of IL-17 signaling in renal autoimmune diseases. Mol Immunol. 2018;104:90–99.
  • Martin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol. 2014;154(1):1–12.
  • Hsu HC, Yang P, Wang J, et al. Interleukin 17–producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9(2):166.
  • Crispín JC, Oukka M, Bayliss G, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181(12):8761–8766.
  • Wong CK, Lit LCW, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127(3):385–393.
  • Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–1483.
  • Zhao XF, Pan HF, Yuan H, et al. Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep. 2010;37(1):81–85.
  • Li Y, Wang R, Liu S, et al. Interleukin-25 is upregulated in patients with systemic lupus erythematosus and ameliorates murine lupus by inhibiting inflammatory cytokine production. Int Immunopharmacol. 2019;74:105680.
  • Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–240.
  • Aggarwal S, Ghilardi N, Xie M-H, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–1914.
  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23–IL-17 immune pathway. Trends Immunol. 2006;27(1):17–23.
  • Fischer K, Przepiera-Będzak H, Sawicki M, et al. Serum interleukin-23 in Polish patients with systemic lupus erythematosus: association with lupus nephritis, obesity, and peripheral vascular disease. Mediat Inflamm. 2017;2017:1.
  • Shahin D, El-Farahaty R, Houssen M, et al. Serum 25-OH vitamin D level in treatment-naïve systemic lupus erythematosus patients: relation to disease activity, IL-23 and IL-17. Lupus. 2017;26(9):917–926.
  • Ghanima ATA, Elolemy GG, Ganeb SS, et al. Role of T helper 17 cells in the pathogenesis of systemic lupus erythematosus. Egypt J Immunol. 2012;19:25–33.
  • Dai H, Kyttaris VC. Inhibition of IL-23/IL-23 Receptor signaling ameliorates disease in lupus-prone mice by decreasing the generation of DN T cells. Am Assoc Immnol. 2016;196(1).
  • Italiani P, Manca ML, Angelotti F, et al. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):27–36.
  • Cheng Y, Yang X, Zhang X, et al. Analysis of expression levels of IL-17 and IL-34 and influencing factors for prognosis in patients with lupus nephritis. Exp Ther Med. 2019;17:2279–2283.
  • Mende R, Vincent FB, Kandane-Rathnayake R, et al. Analysis of Serum Interleukin (IL)-1beta and IL-18 in systemic lupus erythematosus. Front Immunol. 2018;9:1250.
  • Xie HH, Shen H, Zhang L, et al. Elevated serum interleukin-34 level in patients with systemic lupus erythematosus is associated with disease activity. Sci Rep. 2018;8(1):3462.
  • Chu M, Wong CK, Cai Z, et al. Elevated expression and pro-inflammatory activity of IL-36 in patients with systemic lupus erythematosus. Molecules. 2015;20(10):19588–19604.
  • He D, Liu M, Liu B. Interleukin-35 as a new biomarker of renal involvement in lupus nephritis patients. Tohoku J Exp Med. 2018;244(4):263–270.
  • Ye L, Ji L, Wen Z, et al. IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity. J Transl Med. 2014;12(1):69.
  • Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75(1):196–202.
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–1916.
  • Isenberg DA, Merrill JT. Why, why, why de-lupus (does so badly in clinical trials). Expert Rev Clin Immunol. 2016;12:95–98. 
  • AdisInsight. Sifalimumab. 2018. https://adisinsight.springer.com/drugs/800024071 (Accessed on 26th October 2019).
  • Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an anti–interferon‐α receptor monoclonal antibody, in moderate‐to‐severe systemic lupus erythematosus. Arthriti Rheumatol. 2017;69:376–386.
  • ClinicalTrials.gov. Efficacy and safety of anifrolumab compared to placebo in adult subjects with active systemic lupus erythematosus. Bethesda (MD): ClinicalTrials.gov.; 2015.
  • AstraZeneca. Update on TULIP 1 Phase III trial for anifrolumab in systemic lupus erythematosus. Cambridge: AstraZeneca; 2018.
  • ClinicalTrials.gov. Induction of regulatory t cells by low dose il2 in autoimmune and inflammatory diseases (TRANSREG). Bethesda (MD): ClinicalTrials.gov; 2013.
  • ClinicalTrials.gov. Low-dose interleukin-2 for treatment of systemic lupus erythematosus (Charact-IL-2). Bethesda (MD): ClinicalTrials.gov; 2017.
  • ClinicalTrials.gov. ILT-101 in patients with active moderate to severe systemic lupus erythematosus (SLE) (LUPIL-2). Bethesda (MD): ClinicalTrials.gov; 2016.
  • van Vollenhoven RF, Hahn BH, Tsokos GC, et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet. 2018;392(10155):1330–1339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.