3,030
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

COVID-19: captures iron and generates reactive oxygen species to damage the human immune system

&
Pages 213-224 | Received 22 Jan 2021, Accepted 03 Apr 2021, Published online: 26 Apr 2021

References

  • Long Q-X, Tang X-J, Shi Q-L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–1204.
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
  • Sun S, Cai X, Wang H, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020;507:174–180.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768.
  • Shi Y, Wang Y, Shao C, et al. 2020. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451–1454.
  • Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: friend or foe? Life Sci. 2020;256:117900.
  • Casadevall A, Pirofski L-A. In fatal COVID-19, the immune response can control the virus but kill the patient. Proc Natl Acad Sci 2020;117:30009–30011.
  • Shi F-D, Zhou Q. Natural killer cells as indispensable players and therapeutic targets in autoimmunity. Autoimmunity. 2011;44(1):3–10.
  • Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12):875–887.
  • Pascolini S, Vannini A, Deleonardi G, et al. COVID‐19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021;14(2):502–508.
  • Zhou Y, Han T, Chen J, et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Transl Sci. 2020;13(6):1077–1086.
  • Birra D, Benucci M, Landolfi L, et al. COVID 19: a clue from innate immunity. Immunol Res. 2020;68(3):161–168.
  • Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63(5):706–711.
  • Gao W, Li L. Advances on presymptomatic or asymptomatic carrier transmission of COVID-19. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(4):485–488.
  • Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis. 2020;94:154–155.
  • Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 2020;25(10):2000180.
  • Vermund SH, Pitzer VE. Asymptomatic transmission and the infection fatality risk for COVID-19: implications for school reopening. Clinical Infectious Diseases. 2020;, ciaa855.
  • Al-Tawfiq JA. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med Infect Dis. 2020;35:101608.
  • Yu X, Yang R. COVID‐19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respi Viruses. 2020;14(4):474–475.
  • Treibel TA, Manisty C, Burton M, et al. COVID-19: PCR screening of asymptomatic health-care workers at London hospital. The Lancet. 2020;395(10237):1608–1610.
  • Hu Z, Ci C. Screening and management of asymptomatic infection of corona virus disease 2019 (COVID-19). Zhonghua yu Fang yi Xue za Zhi [Chinese Journal of Preventive Medicine. 2020;54:E025–E025.
  • Lei Q, Li Y, Hou H. y, et al. Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections . Allergy. 2021;76(2):551–561.
  • Le Bert N, Clapham HE, Tan AT, et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021;218(5):e20202617.
  • Yuan B, Liu H-Q, Yang Z-R, et al. Recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 patients during medical isolation observation. Scientific reports. 2020;10:11887.
  • Duggan NM, Ludy SM, Shannon BC, et al. A case report of possible novel coronavirus 2019 reinfection. Am J Emerg Med. 2021;39:256.e1–256.e3.
  • Snyder, T. M., R. M. Gittelman, M. Klinger, D. H. May, E. J. Osborne, R. Taniguchi, H. J. Zahid, I. M. Kaplan, J. N. Dines, and M. T. Noakes. 2020. Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels. medRxiv.
  • Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.e15.
  • Dong, T., Y. Peng, A. J. Mentzer, G. Liu, X. Yao, Z. Yin, D. Dong, W. Dejnirattisai, L. Turtle, and T. Rostron. 2020. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients. bioRxiv.
  • To KK-W, Hung IF-N, Ip JD, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis. 2020;ciaa1275.
  • To KK-W, Hung IF-N, Chan K-H, et al. Serum antibody profile of a patient with COVID-19 reinfection. Clin Infect Dis. 2020.
  • Iba T, Levy JH, Levi M, et al. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–2109.
  • Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. The Lancet. 2020;396(10247):320–332.
  • Yao X, Li T, He Z, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing li Xue za Zhi. 2020;49:E009–E009.
  • Youd E, and, Moore L. COVID-19 autopsy in people who died in community settings: the first series. J Clin Pathol. 2020;73(12):840–844.
  • Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33:1007–1014. 
  • Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClin Med. 2020;24:100434.
  • Sami R, Fathi F, Eskandari N, et al. Characterizing the immune responses of those who survived or succumbed to COVID-19: can immunological signatures predict outcome? Cytokine. 2021;140:155439.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506.
  • Fathi F, Sami R, Mozafarpoor S, et al. Immune system changes during COVID-19 recovery play key role in determining disease severity. Int J Immunopathol Pharmacol. 2020;34:205873842096649.
  • Shi N, Ma Y, Fan Y, et al. Predictive value of the neutrophil-to-lymphocyte ratio (NLR) for diagnosis and worse clinical course of the COVID-19: findings from ten provinces in China. 2020.
  • Mathew D, Giles JR, Baxter AE, et al.; The UPenn COVID Processing Unit†. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511.
  • Laing, A. G., A. Lorenc, I. D. M. Del Barrio, A. Das, M. Fish, L. Monin, M. Munoz-Ruiz, D. Mckenzie, T. Hayday, and I. F. Quijorna. A consensus Covid-19 immune signature combines immuno-protection with discrete sepsis-like traits associated with poor prognosis. medRxiv. 2020.06.08.20125112.
  • Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine. 2020;57:102833.
  • Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID‐19): autopsy reveals a ferroptosis signature. ESC Heart Failure. 2020;7(6):3772–3781.
  • Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835.
  • Pagliaro P. Is macrophages heterogeneity important in determining COVID-19 lethality? Med Hypotheses. 2020;143:110073.
  • Yuan D, Thet S, Zhou XJ, et al. The role of NK cells in the development of autoantibodies. Autoimmunity. 2011;44(8):641–651.
  • Baxter AG, Smyth MJ. The role of NK cells in autoimmune disease. Autoimmunity. 2002;35(1):1–14.
  • Itoh Y, Igarashi T, Tatsuma N, et al. Immunogenetic background of patients with autoimmune fatigue syndrome. Autoimmunity. 2000;32(3):193–197.
  • Sanmarco M, Bernard D. Studies of IgG-class anticardiolipin antibodies in myasthenia gravis. Autoimmunity. 1994;18(1):57–63.
  • Madera S, Rapp M, Firth MA, et al. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J Exp Med. 2016;213(2):225–233.
  • Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045. e1039.
  • Yahata T, Takanashi T, Muguruma Y, et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood. 2011;118:2941–2950.
  • Yahata T, Muguruma Y, Yumino S, et al. Quiescent human hematopoietic stem cells in the bone marrow niches organize the hierarchical structure of hematopoiesis. Stem Cells. 2008;26(12):3228–3236.
  • Naka K, Muraguchi T, Hoshii T, et al. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 2008;10(11):1883–1894.
  • Shirai T, Hilhorst M, Harrison DG, et al. Macrophages in vascular inflammation-from atherosclerosis to vasculitis. Autoimmunity. 2015;48(3):139–151.
  • Jafarzadeh A, Chauhan P, Saha B, et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102.
  • Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686.
  • Xu X, Chang X, Pan H, et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy. Zhonghua Bing Li Xue Za Zhi. 2020;49(6):576–582.
  • Park MD. 2020. Macrophages: a Trojan horse in COVID-19? Nat. Rev. Immunol. 2020;20:351.
  • Zhou J, Chu H, Li C, et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 2014;209(9):1331–1342.
  • Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe. 2008;3(6):399–407.
  • Celli J. Surviving inside a macrophage: the many ways of Brucella. Res Microbiol. 2006;157(2):93–98.
  • Handman E, Bullen DV. Interaction of Leishmania with the host macrophage. Trends Parasitol. 2002;18(8):332–334.
  • Gendelrnan HE, Orenstein JM, Baca LM, et al. The macrophage in the persistence and pathogenesis of HIV infection. Aids. 1989;3:475–496.
  • Pollard KM. Silica, silicosis, and autoimmunity. Front Immunol. 2016;7:97.
  • Maejima I, Takahashi A, Omori H, et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. Embo J. 2013;32(17):2336–2347.
  • Wong KW, Jacobs WR. Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol. 2011;13(9):1371–1384.
  • Goren M. Phagocyte lysosomes: interactions with infectious agents, phagosomes, and experimental perturbations in function. Annu Rev Microbiol. 1977;31:507–533.
  • Alshebri MS, Alshouimi RA, Alhumidi HA, et al. Neurological complications of SARS-CoV, MERS-CoV, and COVID-19. SN Compr Clin Med. 2020;2:2037–2047.
  • Amezcua JMG, Jain R, Kleinman G, et al. COVID-19-induced neurovascular injury: a case series with emphasis on pathophysiological mechanisms. SN Compr Clin Med. 2020;2:2109–2125.
  • Ye M, Ren Y, and, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020;88:945–946.
  • Zhang, T., M. B. Rodricks, and E. Hirsh. 2020. COVID-19-associated acute disseminated encephalomyelitis: a case report. MedRxiv.
  • Schönegger CM, Gietl S, Heinzle B, et al. Smell and taste disorders in COVID-19 patients: objective testing and magnetic resonance imaging in five cases.  SN Compr Clin Med. 2020;2:2535–2539.
  • Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55–58.
  • Liu W, Li H. 2020. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. chemrxiv.11938173.v9.
  • Fong K-L, McCay PB, Poyer JL, et al. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973;248(22):7792–7797.
  • Bai J, Cederbaum AI. Mitochondrial catalase and oxidative injury. Biol Signals Recept. 2001;10(3-4):189–199.
  • Guy B, Krell T, Sanchez V, et al. Do Th1 or Th2 sequence motifs exist in proteins? Identification of amphipatic immunomodulatory domains in Helicobacter pylori catalase. Immunol Lett. 2005;96(2):261–275.
  • Horvath MM, Grishin NV. The C‐terminal domain of HPII catalase is a member of the type I glutamine amidotransferase superfamily. Proteins. 2001;42(2):230–236.
  • Chen SX, Schopfer P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem. 1999;260(3):726–735.
  • Thomas T, Stefanoni D, Dzieciatkowska M, et al. 2020. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. medRxiv.
  • Zouali M. "B cells and autoimmunity 2016". Autoimmunity. 2017;50(1):1–3.
  • Domeier PP, Schell SL, Rahman ZSM. Spontaneous germinal centers and autoimmunity. Autoimmunity. 2017;50(1):4–18.
  • Wang F, Hou H, Yao Y, et al. Systemically comparing host immunity between survived and deceased COVID-19 patients. Cell Mol Immunol. 2020;17(8):875–877.
  • Agematsu K, Nagumo H, Yang FC, et al. B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol. 1997;27(8):2073–2079.
  • Seifert M, and, Küppers R. Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation . J Exp Med. 2009;206(12):2659–2669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.