504
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway

, , , &
Pages 223-232 | Received 10 Dec 2021, Accepted 06 Mar 2022, Published online: 15 Mar 2022

References

  • Sathiyakumar V, Kapoor K, Jones SR, et al. Novel therapeutic targets for managing dyslipidemia. Trends Pharmacol Sci. 2018;39(8):733–747.
  • Yang L, Li T, Zha L. Foxc2 alleviates Ox-LDL-induced lipid accumulation, inflammation, and apoptosis of macrophage via regulating the expression of Angptl2. Inflammation. 2020;43(4):1397–1410.
  • Li B, Li H, Dai L, et al. NIK-SIX1 signalling axis regulates high glucose-induced endothelial cell dysfunction and inflammation. Autoimmunity. 2022;55(2):86–89.
  • Li D, Tan Y. TIPE2 suppresses atherosclerosis by exerting a protective effect on macrophages via the inhibition of the akt signaling pathway. Exp Ther Med. 2019;17(4):2937–2944.
  • Cao DJ. Macrophages in cardiovascular homeostasis and disease. Circulation. 2018;138(22):2452–2455.
  • Raghavan S, Singh NK, Gali S, et al. Response by Raghavan et al to letter regarding article, "Protein Kinase Cθ via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6Chi Cells Contributes to Atherosclerosis" ". Circulation. 2019;139(17):2079–2080.
  • Long L, Song Y. Dietary ellagic acid is protective for atherosclerosis. Int J Cardiol. 2018;256:12.
  • Urban D, Pöss J, Böhm M, et al. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–1408.
  • Yurtseven E, Ural D, Baysal K, et al. An update on the role of PCSK9 in Atherosclerosis. J Atheroscler Thromb. 2020;27(9):909–918.
  • Rashid S, Tavori H, Brown PE, et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014;130(5):431–441.
  • Kwakernaak AJ, Lambert G, Dullaart RP. Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins. Clin Biochem. 2014;47(7-8):679–682.
  • Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911):60–68.
  • Rogula S, Błażejowska E. Inclisiran-silencing the cholesterol, Speaking up the Prognosis. J Clin Med. 2021;10(11):2467.
  • Norata GD, Tibolla G, Catapano AL. Targeting PCSK9 for hypercholesterolemia. Annu Rev Pharmacol Toxicol. 2014;54:273–293.
  • Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007;115(4):518–533.
  • Liu D, Wang X, Zhang M, et al. WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis. J Cell Mol Med. 2020;24(20):11729–11741.
  • Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513.
  • Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338.
  • Huang JT, Welch JS, Ricote M, et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400(6742):378–382.
  • Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24.
  • Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4(4):597–609.
  • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79(7):1147–1156.
  • Staels B. PPARgamma and atherosclerosis. Curr Med Res Opin. 2005;21(sup1):S13–S20.
  • Wang Y, Li Z, Liu B, et al. Isoborneol attenuates low-density lipoprotein accumulation and foam cell formation in Macrophages. Drug Des Devel Ther. 2020;14:167–173.
  • Wu C, Chen R, Liu M, et al. Spiromastixones inhibit foam cell formation via regulation of cholesterol efflux and uptake in RAW264.7 macrophages. Mar Drugs. 2015;13(10):6352–6365.
  • Ma X, Hu YW, Mo ZC, et al. NO-1886 up-regulates Niemann-Pick C1 protein (NPC1) expression through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc Drugs Ther. 2009;23(3):199–206.
  • Terasaki M, Yashima H, Mori Y. A dipeptidyl peptidase-4 inhibitor inhibits foam cell formation of macrophages in type 1 diabetes via suppression of CD36 and ACAT-1 expression. Int J Mol Sci. 2020;21(13):4811.
  • Hu J, Wu W, Yu M, et al. MicroRNA-340-5p inhibits endothelial apoptosis, inflammatory response, and pro-coagulation by targeting KDM4C in anti-neutrophil cytoplasmic antibody (ANCA)-mediated glomerulonephritis through activation of B cells. Autoimmunity. 2021;54(6):343–352.
  • Wang J, Xu X, Li P, et al. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 2021;323:1–12.
  • Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther. 2015;21(4):357–366.
  • Zhang E, Wu Y. MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20(3):215–227.
  • Hui B, Hou X, Liu R, et al. Gypenoside inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration. Life Sci. 2021;264:118721.
  • Wang S, Zhang X, Liu M, et al. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol. 2015;53(10):1481–1487.
  • Zhao JF, Ching LC, Huang YC, et al. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res. 2012;56(5):691–701.
  • Crucet M, Wüst SJ, Spielmann P, et al. Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis. 2013;229(1):110–117.
  • Ogura M, Hori M, Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36(1):181–188.
  • Zhu WW, Wang SR, Liu ZH, et al. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells. Biochem Biophys Res Commun. 2017;482(1):93–99.
  • Tsai JY, Su KH, Shyue SK, et al. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-a and ABCA1: role of haem oxygenase-1. Cardiovasc Res. 2010;88(3):415–423.
  • Li S, Cao H, Shen D, et al. Quercetin protects against ox-LDL-induced injury via regulation of ABCAl, LXR-α and PCSK9 in RAW264.7 macrophages. Mol Med Rep. 2018;18(1):799–806.
  • Han QA, Su D, Shi C, et al. Urolithin a attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food Funct. 2020;11(4):3432–3440.
  • Park SH, Kim JL, Kang MK, et al. Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages. Int J Mol Med. 2012;30(5):1105–1112.
  • Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93(2):229–240.
  • Zhang B, Hao Z, Zhou W, et al. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ signaling based on network pharmacology and experimental validation. Bioengineered. 2021;12(1):4887–4898.
  • Zhuang JL, Liu YY, Li ZZ, et al. Amentoflavone prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signal pathway. Toxicol Appl Pharmacol. 2021;431:115733.
  • Stojanović M, Prostran M, Radenković M. Thiazolidinediones improve flow-mediated dilation: a meta-analysis of randomized clinical trials. Eur J Clin Pharmacol. 2016;72(4):385–398.
  • Kelly AS, Bank AJ. The cardiovascular effects of the thiazolidinediones: a review of the clinical data. J Diabetes Complicat. 2007;21(5):326–334.
  • Liu Y, Sun Y, Lin X, et al. Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways. Vascul Pharmacol. 2022;143:106968.
  • Xiong W, Zhao X, Villacorta L, et al. Brown adipocyte-specific PPARγ (peroxisome proliferator-activated receptor γ) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice . Arterioscler Thromb Vasc Biol. 2018;38(8):1738–1747.
  • Wang P, He LY, Shen GD, et al. Inhibitory effects of dioscin on atherosclerosis and foam cell formation in hyperlipidemia rats. Inflammopharmacology. 2017;25(6):633–642.
  • Cheng WL, Zhang Q, Cao JL, et al. ALK7 acts as a positive regulator of macrophage activation through down-regulation of PPARγ expression. J Atheroscler Thromb. 2021;28(4):375–384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.