121
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Effects of Whole-Body Gamma Irradiation and 5-Androstenediol Administration on Serum G-CSF

, , , &
Pages 521-534 | Published online: 08 Oct 2008

References

  • Singh V.K., Seed T.M. Radiation effects. Physician’s Guide to Terrorist Attack, J.M. Roy. Humana Press, Totowa, NJ 2003; 339–362
  • Pellmar T.C., Rockwell S. Priority list of research areas for radiological nuclear threat countermeasures. Radiat. Res. 2005; 163: 115–123, [CSA]
  • Culy C.R., Spencer C.M. Amifostine: an update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome. Drugs 2001; 61: 641–684, [CSA], [CROSSREF]
  • MacVittie T.J., Farese A.M. Cytokine-based treatment for acute radiation-induced myelosuppression: preclinical and clinical perspective. The Medical Basis for Radiation-Accident Preparedness: The Clinical Care of Victims, R.C. Ricks, M.E. Berger, F.M. O’Hara. Parthenon, Boca Raton, FL 2002; 53–72
  • Van der Meeren A., Mouthon M.A., Vandamme M., Squiban C., Aigueperse J. Combinations of cytokines promote survival of mice and limit acute radiation damage in concert with amelioration of vascular damage. Radiat. Res. 2004; 161: 549–559, [CSA]
  • MacVittie T.J., Farese A.M. Experimental approaches to treatment of radiation-induced hematopoietic injury. Radiation Toxicology: Bone Marrow and Leukemia, J.H. Henry, B.I. Lord. Taylor and Francis, London 1995; 141–194
  • Horner A.A., Raz E. Immunostimulatory sequence oligodeoxynucleotide-based vaccination and immunomodulation: two unique but complementary strategies for the treatment of allergic diseases. J. Allergy Clin. Immunol. 2002; 110: 706–712, [CSA], [CROSSREF]
  • Hauer-Jensen M., Fink L.M., Wang J. Radiation injury and the protein C pathway. Crit. Care Med. 2004; 32: S325–330, [CSA], [CROSSREF]
  • Davison B., Large D.M., Anderson D.C., Robertson W.R. Basal steroid production by the zona reticularis of the guinea-pig adrenal cortex. J. Steroid Biochem. 1983; 18: 285–290, [CSA], [CROSSREF]
  • Whitnall M.H., Driscoll W.J., Lee Y.C., Strott C.A. Estrogen and hydroxysteroid sulfotransferases in guinea pig adrenal cortex: cellular and subcellular distributions. Endocrinology 1993; 133: 2284–2291, [CSA], [CROSSREF]
  • Regelson W., Loria R., Kalimi M. Dehydroepiandrosterone (DHEA)—the “mother steroid”. I. Immunologic Action Ann. NY Acad. Sci. 1994; 719: 553–563, [CSA]
  • Bird C.E., Morrow L., Fukumoto Y., Marcellus S., Clark A.F. Delta5-androstenediol: kinetics of metabolism and binding to plasma proteins in normal men and women. J. Clin. Endocrinol. Metab. 1976; 43: 1317–1322, [CSA]
  • Seki M., Kimura T., Takayama T., Yanaihara T., Nakayama T. [Biosynthesis of steroids by human fetal kidney perfused in vitro (author’s transl)]. Acta Obstet. Gynaecol. Jpn. 1981; 33: 805–812, [CSA]
  • Hernandez-Pando R., De La Luz Streber M., Orozco H., Arriaga K., Pavon L., Al-Nakhli S.A., Rook G.A. The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology 1998; 95: 234–241, [CSA], [CROSSREF]
  • Araghi-Niknam M., Liang B., Zhang Z., Ardestani S.K., Watson R.R. Modulation of immune dysfunction during murine leukaemia retrovirus infection of old mice by dehydroepiandrosterone sulphate (DHEAS). Immunology 1997; 90: 344–349, [CSA], [CROSSREF]
  • Whitnall M.H., Elliott T.B., Harding R.A., Inal C.E., Landauer M.R., Wilhelmsen C.L., McKinney L., Miner V.L., Jackson W.E., 3rd, Loria R.M., Ledney G.D., Seed T.M. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int. J. Immunopharmacol. 2000; 22: 1–14, [CSA], [CROSSREF]
  • Loria R.M. Immune up-regulation and tumor apoptosis by androstene steroids. Steroids 2002; 67: 953–966, [CSA], [CROSSREF]
  • Whitnall M.H., Inal C.E., Jackson W.E., 3rd, Miner V.L., Villa V., Seed T.M. In vivo radioprotection by 5-androstenediol: stimulation of the innate immune system. Radiat. Res. 2001; 156: 283–293, [CSA]
  • Whitnall M.H., Villa V., Benjack J., Miner V.L., Seed T.M., Jackson W.E., 3rd. Effects of the novel systemic radioprotectant 5-androstenediol on phagocytosis and oxidative burst in monocytes and granulocytes from mice exposed to whole-body gamma irradiation. Proceedings. 49th Annual Radiation Research Meeting. 2002
  • Stickney D.R., Dowding C., Garsd A., Whitnall M.H., Frincke J. HE2100 and HE3204 protect rhesus macaques from radiation-induced myelosuppression. Proceedings. Annual Meeting of the European Society for Radiation Biology, Budapest, 2004
  • Singh V.K., Yadav V.S. Role of cytokines and growth factors in radioprotection. Exp. Mol. Pathol. 2005; 78: 156–169, [CSA], [CROSSREF]
  • Neta R. Modulation with cytokines of radiation injury: suggested mechanisms of action. Environ. Health Perspect. 1997; 105(Suppl 6)1463–1465, [CSA]
  • Neta R. Modulation of radiation damage by cytokines. Stem Cells 1997; 15(Suppl 2)87–94, [CSA]
  • MacVittie T.J., Farese A.M. Cytokine-based treatment of radiation injury: potential benefits after low-level radiation exposure. Mil. Med. 2002; 167: 68–70, [CSA]
  • Mehrotra S., Mishra K.P., Maurya R., Srimal R.C., Yadav V.S., Pandey R., Singh V.K. Anticellular and immunosuppressive properties of ethanolic extract of Acorus calamus rhizome. Int. Immunopharmacol. 2003; 3: 53–61, [CSA], [CROSSREF]
  • Arroyo C.M., Burman D.L., Kahler D.W., Nelson M.R., Corun C.M., Guzman J.J., Smith M.A., Purcell E.D., Hackley B.E., Jr., Soni S.D., Broomfield C.A. TNF-alpha expression patterns as potential molecular biomarker for human skin cells exposed to vesicant chemical warfare agents: sulfur mustard (HD) and Lewisite (L). Cell Biol. Toxicol. 2004; 20: 345–359, [CSA], [CROSSREF]
  • Xu Y., Kulkosky J., Acheampong E., Nunnari G., Sullivan J., Pomerantz R.J. HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc. Natl. Acad. Sci. USA. 2004; 101: 7070–7075, [CSA], [CROSSREF]
  • Dale D.C. Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs 2002; 62(Suppl 1)1–15, [CSA], [CROSSREF]
  • Boclek R.C., Armitage J.O. Hematopoietic growth factors. Cancer J. Clin. 1996; 46: 165–184, [CSA]
  • Gerber A., Struy H., Weiss G., Lippert H., Ansorge S., Schulz H.U. Effect of granulocyte colony-stimulating factor treatment on ex vivo neutrophil functions in nonneutropenic surgical intensive care patients. J. Interferon Cytokine Res. 2000; 20: 1083–1090, [CSA], [CROSSREF]
  • Ishikawa K., Tanaka H., Matsuoka T., Shimazu T., Yoshioka T., Sugimoto H. Recombinant human granulocyte colony-stimulating factor attenuates inflammatory responses in septic patients with neutropenia. J. Trauma. 1998; 44: 1047–1054, discussion 1054–1045[CSA]
  • Wenisch C., Werkgartner T., Sailer H., Patruta S., Krause R., Daxboeck F., Parschalk B. Effect of preoperative prophylaxis with filgrastim in cancer neck dissection. Eur. J. Clin. Invest. 2000; 30: 460–466, [CSA], [CROSSREF]
  • Chuang P.I., Yee E., Karsan A., Winn R.K., Harlan J.M. A1 is a constitutive and inducible Bcl-2 homologue in mature human neutrophils. Biochem. Biophys. Res. Commun. 1998; 249: 361–365, [CSA], [CROSSREF]
  • Lieschke G.J., Grail D., Hodgson G., Metcalf D., Stanley E., Cheers C., Fowler K.J., Basu S., Zhan Y.F., Dunn A.R. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 1994; 84: 1737–1746, [CSA]
  • Ikebuchi K., Clark S.C., Ihle J.N., Souza L.M., Ogawa M. Granulocyte colony-stimulating factor enhances interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc. Natl. Acad. Sci. USA. 1988; 85: 3445–3449, [CSA]
  • Peterson V.M., Adamovicz J.J., Elliott T.B., Moore M.M., Madonna G.S., Jackson W.E., 3rd, Ledney G.D., Gause W.C. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers. J. Immunol. 1994; 153: 2321–2330, [CSA]
  • Chang C.M., Limanni A., Baker W.H., Dobson M.E., Kalinich J.F., Jackson W., Patchen M.L. Bone marrow and splenic granulocyte-macrophage colony-stimulating factor and transforming growth factor-beta mRNA levels in irradiated mice. Blood 1995; 86: 2130–2136, [CSA]
  • Uckun F.M., Souza L., Waddick K.G., Wick M., Song C.W. In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice. Blood 1990; 75: 638–645, [CSA]
  • Waddick K.G., Song C.W., Souza L., Uckun F.M. Comparative analysis of the in vivo radioprotective effects of recombinant granulocyte colony-stimulating factor (G-CSF), recombinant granulocyte-macrophage CSF, and their combination. Blood 1991; 77: 2364–2371, [CSA]
  • Waselenko J.K., MacVittie T.J., Blakely W.F., Pesik N., Wiley A.L., Dickerson W.E., Tsu H., Confer D.L., Coleman C.N., Seed T., Lowry P., Armitage J.O., Dainiak N. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004; 140: 1037–1051, [CSA]
  • MacVittie T.J., Monroy R.L., Patchen M.L., Souza L.M. Therapeutic use of recombinant human G-CSF (rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation. Int. J. Radiat. Biol. 1990; 57: 723–736, [CSA]
  • Schuening F.G., Storb R., Goehle S., Graham T.C., Appelbaum F.R., Hackman R., Souza L.M. Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood 1989; 74: 1308–1313, [CSA]
  • Drouet M., Mourcin F., Grenier N., Leroux V., Denis J., Mayol J.F., Thullier P., Lataillade J.J., Herodin F. Single administration of stem cell factor, FLT-3 ligand, megakaryocyte growth and development factor, and interleukin-3 in combination soon after irradiation prevents nonhuman primates from myelosuppression: long-term follow-up of hematopoiesis. Blood 2004; 103: 878–885, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.