91
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect of Skin Sensitizers on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Skin Dendritic Cells: Role of Different Immunosuppressive Drugs

, , , , &
Pages 225-241 | Published online: 08 Oct 2008

REFERENCES

  • Griffiths C.E., Dearman R.J., Cumberbatch M., Kimber I. Cytokines and Langerhans cell mobilisation in mouse and man. Cytokine 2005; 21: 67–70
  • Randolph G.J., Angeli V., Swartz M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005; 5: 617–628
  • Saint-Mezard P., Rosieres A., Krasteva M., Berard F., Dubois B., et al. Allergic contact dermatitis. Eur. J. Dermatol. 2004; 14: 284–295
  • Aiba S., Manome H., Nakagawa S., Mollah Z.U., Mizuashi M., et al. p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J. Invest. Dermatol. 2003; 120: 390–399
  • Arrighi J.F., Rebsamen M., Rousset F., Kindler V., Hauser C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J. Immunol. 2001; 166: 3837–3845
  • De Smedt A.C., Van Den Heuvel R.L., Van Tendeloo V.F., Berneman Z.N., Schoeters G.E. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants. Toxicol. Lett. 2005; 28: 377–389
  • Hulette B.C., Ryan C.A., Gildea L.A., Gerberick G.F. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen. Toxicol. Appl. Pharmacol. 2005; 1: 159–166
  • Manome H., Aiba S., Singh S., Yoshino Y., Tagami H. Dexamethasone and cyclosporin A affect the maturation of monocyte-derived dendritic cells differently. Int. Arch. Allergy Immunol. 2000; 122: 76–84
  • Staquet M., Sportouch M., Jacquet C., Schmitt D., Guesnet J., Peguet-Navarro J. Moderate skin sensitizers can induce phenotypic changes on in vitro generated dendritic cells. Toxicol. In Vitro 2004; 18: 493–500
  • Tuschl H., Kovac R. Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol. In Vitro 2001; 15: 327–331
  • Boisleve F., Kerdine-Romer S., Rougier-Larzat N., Pallardy M. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways: role of TNF-alpha and MAPK. J. Invest. Dermatol. 2004; 123: 494–502
  • Toebak M.J., Pohlmann P.R., Sampat-Sardjoepersad S.C., von Blomberg B.M., Bruynzeel D.P., et al, Gibbs S. CXCL8 secretion by dendritic cells predicts contact allergens from irritants. Toxicol. In Vitro 2006; 20: 117–124
  • Verheyen G.R., Schoeters E., Nuijten J.M., Van Den Heuvel R.L., Nelissen I., et al. Cytokine transcript profiling in CD34+ -progenitor derived dendritic cells exposed to contact allergens and irritants. Toxicol. Lett. 2005; 15: 187–194
  • Toebak M.J., Moed H., von Blomberg M.B., Bruynzeel D.P., Gibbs S., et al. Intrinsic characteristics of contact and respiratory allergens influence production of polarizing cytokines by dendritic cells. Contact Dermat 2006; 55: 238–245
  • Aiba S., Manome H., Tagami H. In vitro treatment of human transforming growth factor-beta1-treated monocyte-derived dendritic cells with haptens can induce the phenotypic and functional changes similar to epidermal Langerhans cells in the initiation phase of allergic contact sensitivity reaction. Immunol. 2000; 101: 68–75
  • Boisleve F., Kerdine-Römer S., Pallardy M. Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha. Toxicol. 2005; 206: 233–244
  • Brand P., Plochmann S., Valk E., Zahn S., Saloga J., et al. Activation and translocation of p38 mitogen-activated protein kinase after stimulation of monocytes with contact sensitizers. J. Invest. Dermatol. 2002; 119: 99–106
  • Bruchhausen S., Zahn S., Valk E., Knop J., Becker D. Thiol antioxidants block the activation of antigen-presenting cells by contact sensitizers. J. Invest. Dermatol. 2003; 121: 1039–1044
  • Matos T.J., Duarte C.B., Gonçalo M., Lopes M.C. DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. J. Dermatol. Science 2005; 39: 113–123
  • Matos T.J., Duarte C.B., Gonçalo M., Lopes M.C. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol. Cell Biol. 2005; 83: 607–614
  • Mizuashi M., Ohtani T., Nakagawa S., Aiba S. Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J. Invest. Dermatol. 2005; 124: 579–586
  • Cruz M.T., Gonçalo M., Figueiredo A., Carvalho A.P., Duarte C.B., Lopes MC. Contact sensitizer nickel sulphate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp. Dermatol. 2004; 13: 18–26
  • Bruch-Gerharz D., Ruzicka T., Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J. Invest. Dematol. 1998; 110: 1–7
  • Cals-Grierson M.M., Ormerod A.D. Nitric oxide function in the skin. Nitric Oxide 2004; 10: 179–193
  • Nishioka Y., Wen H., Mitani K., Robbins P.D., Lotze M.T., et al. Differential effects of IL-12 on the generation of alloreactive CTL mediated by murine and human dendritic cells: a critical role for nitric oxide. J. Leukoc. Biol. 2003; 73: 621–629
  • Ormerod A.D., Dwyer C.M., Reid A., Copeland P., Thompson W.D. Inducible nitric oxide synthase demonstrated in allergic and irritant contact dermatitis. Acta Derm. Venereol. 1997; 77: 436–440
  • Ross R., Gillitzer C., Kleinz R., Schwing J., Kleinert H., et al. Involvement of NO in contact hypersensitivity. Int. Immunol. 1998; 10: 61–69
  • Rowe A., Farrel A.M., Bunker C.B. Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses. Brit. J. Dermatol. 1997; 136: 18–23
  • Sahin S., Onder M., Sancak B., Bukan N., Gurer M.A. The role of nitric oxide in allergic contact dermatitis. Arch. Dermatol. Res. 2001; 293: 214–217
  • Wallengren J., Larsson B. Nitric oxide participates in prick test and irritant patch test reactions in human skin. Arch. Dermatol. Res. 2001; 293: 121–125
  • Abe M., Thomson A.W. Influence of immunosuppressive drugs on dendritic cells. Transpl. Immunol. 2003; 11: 357–365
  • Girolomoni G., Lutz M.B., Pastore S., Abmann C.U., Cavani A., Ricciardi-Castagnoli P. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin. Eur. J. Immunol. 1995; 25: 2163–2169
  • Cruz M.T., Duarte C.B., Gonçalo M., Carvalho A.P., Lopes M.C. Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells. Am. J. Physiol. 1999; 277: C1050–1057
  • Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982; 126: 131–138
  • Singh S., Aiba S., Manome H., Tagami H. The effects of dexamethasone, cyclosporine, and vitamin D(3) on the activation of dendritic cells stimulated by haptens. Arch. Dermatol. Res. 1999; 291: 548–554
  • Ross R., Reske-Kunz A.B. The role of NO in contact hypersensitivity. Int. Immunopharmacol. 2001; 1: 1469–1478
  • Hyun E., Bolla M., Steinhoff M., Wallace J.L., Soldato P.D., Vergnolle N. Anti-inflammatory effects of nitric oxide-releasing hydrocortisone NCX 1022, in a murine model of contact dermatitis. Br. J. Pharmacol. 2004; 143: 618–625
  • Hoetzenecker W., Meingassner J.G., Ecker R., Stingl G., Stuetz A., Elbe-Burger A. Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. J. Invest. Dermatol. 2004; 122: 673–684
  • Kalthoff F.S., Chung J., Musser P., Stuetz A. Pimecrolimus does not affect the differentiation, maturation and function of human monocyte-derived dendritic cells, in contrast to corticosteroids. Clin. Exp. Immunol. 2003; 133: 350–359
  • Krummen M., Varga G., Steinert M., Stuetz A., Luger T.A., Grabbe S. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function. Exp. Dermatol. 2006; 15: 43–50
  • Meingassner J., Kowalsky E., Schwendinger H., Elbe-Burger A., Stutz A. Pimecrolimus does not affect Langerhans cells in murine epidermis. Br. J. Dermatol. 2003; 149: 853–857
  • Woltman A.M., de Fijter J.W., Kamerling S.W., Paul L.C., Daha M.R., van Kooten C. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur. J. Immunol. 2000; 30: 1807–1812
  • Manome H., Aiba S., Tagami H. Simple chemicals can induce maturation and apoptosis of dendritic cells. Immunol. 1999; 98: 481–490
  • Duperrier K., Velten F.W., Bohlender J., Demory A., Metharom P., Goerdt S. Immunosuppressive agents mediate reduced allostimulatory properties of myeloid-derived dendritic cells despite induction of divergent molecular phenotypes. Mol. Immunol. 2005; 42: 1531–1540
  • Matsue H., Yang C., Matsue K., Edelbaum D., Mummert M., Takashima A. Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J. Immunol. 2002; 169: 3555–3564
  • Stepkowski S.M. Molecular targets for existing and novel immunosuppressive drugs. Expert Rev. Mol. Med. 2000; 21: 1–23
  • Kaibori M., Okumura T., Ito S., Oda M., Inoue T., Kamiyama Y. Inhibition of iNOS induction by FK506, but not by cyclosporine, in rat hepatocytes. Transplant. Proc. 1999; 31: 804–805
  • Baumer W., Sulzle B., Weigt H., De Vries V.C., Hecht M., et al. Cilomilast, tacrolimus and rapamycin modulate dendritic cell function in the elicitation phase of allergic contact dermatitis. Br. J. Dermatol. 2005; 153: 136–144
  • Yamamoto Y., Gaynor R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 2001; 107: 135–42
  • Kleinert H., Pautz A., Linker K., Schwarz P.M. Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 2004; 500: 255–266
  • Li Y.H., Yan Z.Q., Brauner A., Tullus K. Activation of macrophage nuclear factor-kappa B and induction of inducible nitric oxide synthase by LPS. Respir. Res. 2002; 23
  • Matsumura M., Kakishita H., Suzuki M., Banba N., Hattori Y. Dexamethasone suppresses iNOS gene expression by inhibiting NF-kappaB in vascular smooth muscle cells. Life Sci. 2001; 69: 1067–1077
  • Vital A.L., Gonçalo M., Cruz M.T., Figueiredo A., Duarte C.B., Lopes M.C. Dexamethasone prevents GM-CSF-induced NF-kB activation, iNOS expression and NO production in a skin dendritic cell line. Mediators Inflam. 2003; 12: 71–78
  • Cruz M.T., Duarte C.B., Goncalo M., Figueiredo A., Carvalho A.P., Lopes M.C. Granulocyte-macrophage colony-stimulating factor activates the transcription of nuclear factor kappa B and induces the expression of nitric oxide synthase in a skin dendritic cell line. Immunol. Cell Biol. 2001; 79: 590–596
  • Cruz M.T., Duarte C.B., Gonçalo M., Figueiredo A., Carvalho A.P., Lopes M.C. LPS induction of IkB alpha degradation and iNOS expression in a skin dendritic cell line is prevented by the JAK 2 inhibitor, Tyrphostin B42. Nitric Oxide 2001; 5: 53–61
  • Goebeler M., Gillitzer R., Kilian K., Utzel K., Brocker E.B., et al. Multiple signalling pathways regulate NF-kB-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood 2001; 97: 46–55
  • Goebeler M., Roth J., Brocker E.B., Sorg C., Schulze-Osthoff K. Activation of nuclear factor-kappa B and gene expression in human endothelila cells by the common haptens nickel and cobalt. J. Immunol. 1995; 155: 2459–2467
  • Barchowsky A., Soucy N.V., O'Hara K.A., Hwa J., Noreault T.L., Andrew A.S. A novel pathway for nickel-induced interleukin-8 expression. J. Biol. Chem. 2002; 277: 24225–24231
  • Andrew A.S., Klei L.R., Barchowsky A. AP-1 dependent induction of plasminogen activator inhibitor-1 by nickel does not require reactive oxygen. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 28: L616–623

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.