994
Views
13
CrossRef citations to date
0
Altmetric
Invited Review

Targeting caspases in intracellular protozoan infections

, , , , , , & show all
Pages 159-173 | Accepted 09 Jul 2008, Published online: 01 Jun 2009

References

  • Petrilli, V.; Dostert, C.; Muruve, D. A.; Tschopp, J. The inflammasome: A danger sensing complex triggering innate immunity. Curr Opin Immunol. 2007, 19 (6), 615–622.
  • Muruve, D. A.; Petrilli, V.; Zaiss, A. K.; White, L. R.; Clark, S. A.; Ross, P. J.; Parks, R. J.; Tschopp, J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008, 452 (7183), 103–107.
  • Concha, N. O.; Abdel-Meguid, S. S. Controlling apoptosis by inhibition of caspases. Curr Med Chem. 2002, 9 (6), 713–726.
  • Green, D. R.; Kroemer, G. Pharmacological manipulation of cell death: Clinical applications in sight? J Clin Invest. 2005, 115 (10), 2610–2617.
  • Lavrik, I. N.; Golks, A.; Krammer, P. H. Caspases:Pharmacological manipulation of cell death. J Clin Invest. 2005, 115 (10), 2665–2672.
  • Riedl, S. J.; Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004, 5 (11), 897–907.
  • Bidere, N.; Su, H. C.; Lenardo, M. J. Genetic disorders of programmed cell death in the immune system. Annu Rev Immunol. 2006, 24, 321–352.
  • Atkinson, E. A.; Barry, M.; Darmon, A. J.; Shostak, I.; Turner, P. C.; Moyer, R. W.; Bleackley, R. C. Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J Biol Chem. 1998, 273 (33), 21261–21266.
  • Voskoboinik, I.; Smyth, M. J.; Trapani, J. A. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006, 6 (12), 940–952.
  • Pipkin, M. E.; Lieberman, J. Delivering the kiss of death: Progress on understanding how perforin works. Curr Opin Immunol. 2007, 19 (3), 301–308.
  • Wang, C. Y.; Mayo, M. W.; Korneluk, R. G.; Goeddel, D. V.; Baldwin, A. S., Jr. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998, 281 (5383), 1680–1683.
  • Khoshnan, A.; Tindell, C.; Laux, I.; Bae, D.; Bennett, B.; Nel, A. E. The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol. 2000, 165 (4), 1743–1754.
  • Micheau, O.; Lens, S.; Gaide, O.; Alevizopoulos, K.; Tschopp, J. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 2001, 21 (16), 5299–5305.
  • Roulston, A.; Marcellus, R. C.; Branton, P. E. Viruses and apoptosis. Annu Rev Microbiol. 1999, 53 577–628.
  • Gao, L. Y.; Kwaik, Y. A. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 2000, 8 (7), 306–313.
  • Luder, C. G.; Gross, U.; Lopes, M. F. Intracellular protozoan parasites and apoptosis: Diverse strategies to modulate parasite-host interactions. Trends Parasitol. 2001, 17 (10), 480–486.
  • Heussler, V. T.; Kuenzi, P.; Rottenberg, S. Inhibition of apoptosis by intracellular protozoan parasites. Int J Parasitol. 2001, 31 (11), 1166–1176.
  • James, E. R.; Green, D. R. Manipulation of apoptosis in the host-parasite interaction. Trends Parasitol. 2004, 20 (6), 280–287.
  • Schaumburg, F.; Hippe, D.; Vutova, P.; Luder, C. G. Pro- and anti-apoptotic activities of protozoan parasites. Parasitology. 2006, 132 (Suppl), S69–85.
  • Thome, M.; Schneider, P.; Hofmann, K.; Fickenscher, H.; Meinl, E.; Neipel, F.; Mattmann, C.; Burns, K.; Bodmer, J. L.; Schroter, M.; Scaffidi, C.; Krammer, P. H.; Peter, M. E.; Tschopp, J. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997, 386 (6624), 517–521.
  • Vutova, P.; Wirth, M.; Hippe, D.; Gross, U.; Schulze-Osthoff, K.; Schmitz, I.; Luder, C. G. Toxoplasma gondii inhibits Fas/CD95-triggered cell death by inducing aberrant processing and degradation of caspase 8. Cell Microbiol. 2007, 9 (6), 1556–1570.
  • Hashimoto, M.; Nakajima-Shimada, J.; Aoki, T. Trypanosoma cruzi posttranscriptionally up-regulates and exploits cellular FLIP for inhibition of death-inducing signal. Mol Biol Cell. 2005, 16 (8), 3521–3528.
  • Heussler, V. T.; Machado, J., Jr.; Fernandez, P. C.; Botteron, C.; Chen, C. G.; Pearse, M. J.; Dobbelaere, D. A. The intracellular parasite Theileria parva protects infected T cells from apoptosis. Proc Natl Acad Sci U S A. 1999, 96 (13), 7312–7317.
  • Dessauge, F.; Hilaly, S.; Baumgartner, M.; Blumen, B.; Werling, D.; Langsley, G. c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene. 2005, 24 (6), 1075–1083.
  • Dessauge, F.; Lizundia, R.; Langsley, G. Constitutively activated CK2 potentially plays a pivotal role in Theileria-induced lymphocyte transformation. Parasitology. 2005, 130 (Suppl), S37–44.
  • Lizundia, R.; Sengmanivong, L.; Guergnon, J.; Muller, T.; Schnelle, T.; Langsley, G.; Shorte, S. L. Use of micro-rotation imaging to study JNK-mediated cell survival in Theileria parva-infected B-lymphocytes. Parasitology. 2005, 130 (Pt 6), 629–635.
  • Guergnon, J.; Dessauge, F.; Langsley, G.; Garcia, A. Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3. Biochimie. 2003, 85 (8), 771–776.
  • Kuenzi, P.; Schneider, P.; Dobbelaere, D. A. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. J Immunol. 2003, 171 (3), 1224–1231.
  • Nakajima-Shimada, J.; Zou, C.; Takagi, M.; Umeda, M.; Nara, T.; Aoki, T. Inhibition of Fas-mediated apoptosis by Trypanosoma cruzi infection. Biochim Biophys Acta. 2000, 1475 (2), 175–183.
  • Petersen, C. A.; Krumholz, K. A.; Carmen, J.; Sinai, A. P.; Burleigh, B. A. Trypanosoma cruzi infection and nuclear factor kappa B activation prevent apoptosis in cardiac cells. Infect Immun. 2006, 74 (3), 1580–1587.
  • Chuenkova, M. V.; Pereira, M. A. A trypanosomal protein synergizes with the cytokines ciliary neurotrophic factor and leukemia inhibitory factor to prevent apoptosis of neuronal cells. Mol Biol Cell. 2000, 11 (4), 1487–1498.
  • Chuenkova, M. V.; Furnari, F. B.; Cavenee, W. K.; Pereira, M. A. Trypanosoma cruzi trans-sialidase: A potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A. 2001, 98 (17), 9936–9941.
  • Aoki Mdel, P.; Cano, R. C.; Pellegrini, A. V.; Tanos, T.; Guinazu, N. L.; Coso, O. A.; Gea, S. Different signaling pathways are involved in cardiomyocyte survival induced by a Trypanosoma cruzi glycoprotein. Microbes Infect. 2006, 8 (7), 1723–1731.
  • Sakai, T.; Hisaeda, H.; Ishikawa, H.; Maekawa, Y.; Zhang, M.; Nakao, Y.; Takeuchi, T.; Matsumoto, K.; Good, R. A.; Himeno, K. Expression and role of heat-shock protein 65 (HSP65) in macrophages during Trypanosoma cruzi infection: involvement of HSP65 in prevention of apoptosis of macrophages. Microbes Infect. 1999, 1 (6), 419–427.
  • Hisaeda, H.; Sakai, T.; Ishikawa, H.; Maekawa, Y.; Yasutomo, K.; Good, R. A.; Himeno, K. Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. J Immunol. 1997, 159 (5), 2375–2381.
  • Nash, P. B.; Purner, M. B.; Leon, R. P.; Clarke, P.; Duke, R. C.; Curiel, T. J. Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. J Immunol. 1998, 160 (4), 1824–1830.
  • Goebel, S.; Luder, C. G.; Gross, U. Invasion by Toxoplasma gondii protects human-derived HL-60 cells from actinomycin D-induced apoptosis. Med Microbiol Immunol. 1999, 187 (4), 221–226.
  • Channon, J. Y.; Miselis, K. A.; Minns, L. A.; Dutta, C.; Kasper, L. H. Toxoplasma gondii induces granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by human fibroblasts: Implications for neutrophil apoptosis. Infect Immun. 2002, 70 (11), 6048–6057.
  • Orlofsky, A.; Somogyi, R. D.; Weiss, L. M.; Prystowsky, M. B. The murine antiapoptotic protein A1 is induced in inflammatory macrophages and constitutively expressed in neutrophils. J Immunol. 1999, 163 (1), 412–419.
  • Carmen, J. C.; Hardi, L.; Sinai, A. P. Toxoplasma gondii inhibits ultraviolet light-induced apoptosis through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Cell Microbiol. 2006, 8 (2), 301–315.
  • Goebel, S.; Gross, U.; Luder, C. G. Inhibition of host cell apoptosis by Toxoplasma gondii is accompanied by reduced activation of the caspase cascade and alterations of poly(ADP-ribose) polymerase expression. J Cell Sci. 2001, 114 (Pt 19), 3495–3505.
  • Payne, T. M.; Molestina, R. E.; Sinai, A. P. Inhibition of caspase activation and a requirement for NF-kappaB function in the Toxoplasma gondii- mediated blockade of host apoptosis. J Cell Sci. 2003, 116 (Pt 21), 4345–4358.
  • Molestina, R. E.; Payne, T. M.; Coppens, I.; Sinai, A. P. Activation of NF-kappaB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IkappaB to the parasitophorous vacuole membrane. J Cell Sci. 2003, 116 (Pt 21), 4359–4371.
  • Keller, P.; Schaumburg, F.; Fischer, S. F.; Hacker, G.; Gross, U.; Luder, C. G. Direct inhibition of cytochrome c-induced caspase activation in vitro by Toxoplasma gondii reveals novel mechanisms of interference with host cell apoptosis. FEMS Microbiol Lett. 2006, 258 (2), 312–319.
  • Nakano, Y.; Hisaeda, H.; Sakai, T.; Zhang, M.; Maekawa, Y.; Zhang, T.; Nishitani, M.; Ishikawa, H.; Himeno, K. Granule-dependent killing of Toxoplasma gondii by CD8+ T cells. Immunology. 2001, 104 (3), 289–298.
  • Persson, E. K.; Agnarson, A. M.; Lambert, H.; Hitziger, N.; Yagita, H.; Chambers, B. J.; Barragan, A.; Grandien, A. Death receptor ligation or exposure to perforin trigger rapid egress of the intracellular parasite Toxoplasma gondii. J Immunol. 2007, 179 (12), 8357–8365.
  • Moore, K. J.; Matlashewski, G. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol. 1994, 152 (6), 2930–2937.
  • Akarid, K.; Arnoult, D.; Micic-Polianski, J.; Sif, J.; Estaquier, J.; Ameisen, J. C. Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c. J Leukoc Biol. 2004, 76 (1), 95–103.
  • Conceicao-Silva, F.; Hahne, M.; Schroter, M.; Louis, J.; Tschopp, J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur J Immunol. 1998, 28 (1), 237–245.
  • Chakour, R.; Guler, R.; Bugnon, M.; Allenbach, C.; Garcia, I.; Mauel, J.; Louis, J.; Tacchini-Cottier, F. Both the Fas ligand and inducible nitric oxide synthase are needed for control of parasite replication within lesions in mice infected with Leishmania major whereas the contribution of tumor necrosis factor is minimal. Infect Immun. 2003, 71 (9), 5287–5295.
  • Alexander, C. E.; Kaye, P. M.; Engwerda, C. R. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur J Immunol. 2001, 31 (4), 1199–1210.
  • Eidsmo, L.; Wolday, D.; Berhe, N.; Sabri, F.; Satti, I.; El Hassan, A. M.; Sundar, S.; Chiodi, F.; Akuffo, H. Alteration of Fas and Fas ligand expression during human visceral leishmaniasis. Clin Exp Immunol. 2002, 130 (2), 307–313.
  • Huang, F. P.; Xu, D.; Esfandiari, E. O.; Sands, W.; Wei, X. Q.; Liew, F. Y. Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide production. J Immunol. 1998, 160 (9), 4143–4147.
  • Aga, E.; Katschinski, D. M.; van Zandbergen, G.; Laufs, H.; Hansen, B.; Muller, K.; Solbach, W.; Laskay, T. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol. 2002, 169 (2), 898–905.
  • van Zandbergen, G.; Klinger, M.; Mueller, A.; Dannenberg, S.; Gebert, A.; Solbach, W.; Laskay, T. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol. 2004, 173 (11), 6521–6525.
  • Ribeiro-Gomes, F. L.; Otero, A. C.; Gomes, N. A.; Moniz-De-Souza, M. C.; Cysne-Finkelstein, L.; Arnholdt, A. C.; Calich, V. L.; Coutinho, S. G.; Lopes, M. F.; DosReis, G. A. Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol. 2004, 172 (7), 4454–4462.
  • Afonso, L.; Borges, V. M.; Cruz, H.; Ribeiro-Gomes, F. L.; Dosreis, G. A.; Dutra, A. N.; Clarencio, J.; de Oliveira, C. I.; Barral, A.; Barral-Netto, M.; Brodskyn, C. I. Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. J Leukoc Biol. 2008, 84 (2), –.
  • RibeiroGomes, F. L.; Moniz-de-Souza, M. C.; Borges, V. M.; Nunes, M. P.; Mantuano-Barradas, M.; D’Avila, H.; Bozza, P. T.; Calich, V. L.; DosReis, G. A. Turnover of neutrophils mediated by Fas ligand drives Leishmania major infection. J Infect Dis. 2005, 192 (6), 1127–1134.
  • Ribeiro-Gomes, F. L.; Moniz-de-Souza, M. C.; Alexandre-Moreira, M. S.; Dias, W. B.; Lopes, M. F.; Nunes, M. P.; Lungarella, G.; DosReis, G. A. Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase. J Immunol. 2007, 179 (6), 3988–3994.
  • Louis, J. A.; Conceicao-Silva, F.; Himmelrich, H.; Tacchini-Cottier, F.; Launois, P. Anti-leishmania effector functions of CD4+ Th1 cells and early events instructing Th2 cell development and susceptibility to Leishmania major in BALB/c mice. Adv Exp Med Biol. 1998, 452 53–60.
  • Ribeiro-Gomes, F. L.; Silva, M. T.; Dosreis, G. A. Neutrophils, apoptosis and phagocytic clearance: An innate sequence of cellular responses regulating intramacrophagic parasite infections. Parasitology. 2006, 132 (Suppl), S61–68.
  • Gavrilescu, L. C.; Denkers, E. Y. Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infect Immun. 2003, 71 (11), 6109–6115.
  • Lopes, M. F.; dos Reis, G. A. Trypanosoma cruzi-induced immunosuppression: blockade of costimulatory T-cell responses in infected hosts due to defective T-cell receptor-CD3 functioning. Infect Immun. 1994, 62 (4), 1484–1488.
  • Lopes, M. F.; da Veiga, V. F.; Santos, A. R.; Fonseca, M. E.; DosReis, G. A. Activation-induced CD4+ T cell death by apoptosis in experimental Chagas’ disease. J Immunol. 1995, 154 (2), 744–752.
  • Martins, G. A.; Cardoso, M. A.; Aliberti, J. C.; Silva, J. S. Nitric oxide-induced apoptotic cell death in the acute phase of Trypanosoma cruzi infection in mice. Immunol Lett. 1998, 63 (2), 113–120.
  • Khan, I. A.; Matsuura, T.; Kasper, L. H. Activation-mediated CD4+ T cell unresponsiveness during acute Toxoplasma gondii infection in mice. Int Immunol. 1996, 8 (6), 887–896.
  • Luder, C. G.; Gross, U. Apoptosis and its modulation during infection with Toxoplasma gondii: molecular mechanisms and role in pathogenesis. Curr Top Microbiol Immunol. 2005, 289, 219–237.
  • Lee, Y. H.; Channon, J. Y.; Matsuura, T.; Schwartzman, J. D.; Shin, D. W.; Kasper, L. H. Functional and quantitative analysis of splenic T cell immune responses following oral Toxoplasma gondii infection in mice. Exp Parasitol. 1999, 91 (3), 212–221.
  • Balde, A. T.; Sarthou, J. L.; Roussilhon, C. Acute Plasmodium falciparum infection is associated with increased percentages of apoptotic cells. Immunol Lett. 1995, 46 (1–2), 59–62.
  • Matsumoto, J.; Kawai, S.; Terao, K.; Kirinoki, M.; Yasutomi, Y.; Aikawa, M.; Matsuda, H. Malaria infection induces rapid elevation of the soluble Fas ligand level in serum and subsequent T lymphocytopenia: Possible factors responsible for the differences in susceptibility of two species of Macaca monkeys to Plasmodium coatneyi infection. Infect Immun. 2000, 68 (3), 1183–1188.
  • Kemp, K.; Akanmori, B. D.; Adabayeri, V.; Goka, B. Q.; Kurtzhals, J. A.; Behr, C.; Hviid, L. Cytokine production and apoptosis among T cells from patients under treatment for Plasmodium falciparum malaria. Clin Exp Immunol. 2002, 127 (1), 151–157.
  • Das, G.; Vohra, H.; Rao, K.; Saha, B.; Mishra, G. C. Leishmania donovani infection of a susceptible host results in CD4+ T-cell apoptosis and decreased Th1 cytokine production. Scand. J Immunol. 1999, 49 (3), 307–310.
  • Bertho, A. L.; Santiago, M. A.; Da-Cruz, A. M.; Coutinho, S. G. Detection of early apoptosis and cell death in T CD4+ and CD8+ cells from lesions of patients with localized cutaneous leishmaniasis. Braz J Med Biol Res. 2000, 33 (3), 317–325.
  • Pinheiro, R. O.; Pinto, E. F.; Benedito, A. B.; Lopes, U. G.; Rossi-Bergmann, B. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis. An Acad Bras Cienc. 2004, 76 (3), 519–527.
  • Budd, R. C. Activation-induced cell death. Curr. Opin. Immunol. 2001, 13 (3), 356–362.
  • Lopes, M. F.; Nunes, M. P.; Henriques-Pons, A.; Giese, N.; Morse, H. C., 3rd; Davidson, W. F.; Araujo-Jorge, T. C.; DosReis, G. A. Increased susceptibility of Fas ligand-deficient gld mice to Trypanosoma cruzi infection due to a Th2-biased host immune response. Eur J Immunol. 1999, 29 (1), 81–89.
  • de Meis, J.; Mendes-da-Cruz, D. A.; Farias-de-Oliveira, D. A.; Correa-de-Santana, E.; Pinto-Mariz, F.; Cotta-de-Almeida, V.; Bonomo, A.; Savino, W. Atrophy of mesenteric lymph nodes in experimental Chagas’ disease: Differential role of Fas/Fas-L and TNFRI/TNF pathways. Microbes Infect. 2006, 8 (1), 221–231.
  • Guillermo, L. V.; Silva, E. M.; Ribeiro-Gomes, F. L.; De Meis, J.; Pereira, W. F.; Yagita, H.; DosReis, G. A.; Lopes, M. F. The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells in Trypanosoma cruzi infection. J Leukoc Biol. 2007, 81 (4), 942–951.
  • Lopes, M. F.; DosReis, G. A. Trypanosoma cruzi-induced immunosuppression: selective triggering of CD4+ T-cell death by the T-cell receptor-CD3 pathway and not by the CD69 or Ly-6 activation pathway. Infect Immun. 1996, 64 (5), 1559–1564.
  • Zuniga, E.; Motran, C. C.; Montes, C. L.; Yagita, H.; Gruppi, A. Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. J Immunol. 2002, 168 (8), 3965–3973.
  • Acosta Rodriguez, E. V.; Zuniga, E. I.; Montes, C. L.; Merino, M. C.; Bermejo, D. A.; Amezcua Vesely, M. C.; Motran, C. C.; Gruppi, A. Trypanosoma cruzi infection beats the B-cell compartment favouring parasite establishment: can we strike first? Scand. J Immunol. 2007, 66 (2–3), 137–142.
  • Martins, G. A.; Vieira, L. Q.; Cunha, F. Q.; Silva, J. S. Gamma interferon modulates CD95 (Fas) and CD95 ligand (Fas-L) expression and nitric oxide-induced apoptosis during the acute phase of Trypanosoma cruzi infection: A possible role in immune response control. Infect Immun. 1999, 67 (8), 3864–3871.
  • Zuniga, E.; Rabinovich, G. A.; Iglesias, M. M.; Gruppi, A. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol. 2001, 70 (1), 73–79.
  • Mordue, D. G.; Monroy, F.; La Regina, M.; Dinarello, C. A.; Sibley, L. D. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol. 2001, 167 (8), 4574–4584.
  • Gavrilescu, L. C.; Denkers, E. Y. IFN-gamma overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection. J Immunol. 2001, 167 (2), 902–909.
  • Liesenfeld, O.; Kosek, J. C.; Suzuki, Y. Gamma interferon induces Fas-dependent apoptosis of Peyer’s patch T cells in mice following peroral infection with Toxoplasma gondii. Infect Immun. 1997, 65 (11), 4682–4689.
  • Gavrilescu, L. C.; Denkers, E. Y. Interleukin-12 p40- and Fas ligand-dependent apoptotic pathways involving STAT-1 phosphorylation are triggered during infection with a virulent strain of Toxoplasma gondii. Infect Immun. 2003, 71 (5), 2577–2583.
  • Caamano, J.; Tato, C.; Cai, G.; Villegas, E. N.; Speirs, K.; Craig, L.; Alexander, J.; Hunter, C. A. Identification of a role for NF-kappa B2 in the regulation of apoptosis and in maintenance of T cell-mediated immunity to Toxoplasma gondii. J Immunol. 2000, 165 (10), 5720–5728.
  • Desbarats, J.; Stone, J. E.; Lin, L.; Zakeri, Z. F.; Davis, G. S.; Pfeiffer, L. M.; Titus, R. G.; Newell, M. K. Rapid early onset lymphocyte cell death in mice resistant, but not susceptible to Leishmania major infection. Apoptosis. 2000, 5 (2), 189–196.
  • Mukherjee, P.; Sen, P. C.; Ghose, A. C. Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: Involvement of Ser/Thr phosphatase. Apoptosis. 2006, 11 (11), 2013–2029.
  • Potestio, M.; D’Agostino, P.; Romano, G. C.; Milano, S.; Ferlazzo, V.; Aquino, A.; Di Bella, G.; Caruso, R.; Gambino, G.; Vitale, G.; Mansueto, S.; Cillari, E. CD4+ CCR5+ and CD4+ CCR3+ lymphocyte subset and monocyte apoptosis in patients with acute visceral leishmaniasis. Immunology. 2004, 113 (2), 260–268.
  • Helmby, H.; Jonsson, G.; Troye-Blomberg, M. Cellular changes and apoptosis in the spleens and peripheral blood of mice infected with blood-stage Plasmodium chabaudi chabaudi AS. Infect Immun. 2000, 68 (3), 1485–1490.
  • Sanchez-Torres, L.; Rodriguez-Ropon, A.; Aguilar-Medina, M.; Favila-Castillo, L. Mouse splenic CD4+ and CD8+ T cells undergo extensive apoptosis during a Plasmodium chabaudi chabaudi AS infection. Parasite Immunol. 2001, 23 (12), 617–626.
  • Beattie, L.; Engwerda, C. R.; Wykes, M.; Good, M. F. CD8+ T lymphocyte-mediated loss of marginal metallophilic macrophages following infection with Plasmodium chabaudi chabaudi. AS J Immunol. 2006, 177 (4), 2518–2526.
  • Renggli, J.; Hahne, M.; Matile, H.; Betschart, B.; Tschopp, J.; Corradin, G. Elimination of P. berghei liver stages is independent of Fas (CD95/Apo-I) or perforin-mediated cytotoxicity. Parasite Immunol. 1997, 19 (3), 145–148.
  • Doolan, D. L.; Hoffman, S. L. The complexity of protective immunity against liver-stage malaria. J Immunol. 2000, 165 (3), 1453–1462.
  • Hirunpetcharat, C.; Good, M. F. Deletion of Plasmodium berghei-specific CD4+ T cells adoptively transferred into recipient mice after challenge with homologous parasite. Proc Natl Acad Sci USA. 1998, 95 (4), 1715–1720.
  • Wipasa, J.; Xu, H.; Stowers, A.; Good, M. F. Apoptotic deletion of Th cells specific for the 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 during malaria infection. J Immunol. 2001, 167 (7), 3903–3909.
  • Xu, H.; Wipasa, J.; Yan, H.; Zeng, M.; Makobongo, M. O.; Finkelman, F. D.; Kelso, A.; Good, M. F. The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. J Exp Med. 2002, 195 (7), 881–892.
  • Potter, S. M.; Chan-Ling, T.; Rosinova, E.; Ball, H. J.; Mitchell, A. J.; Hunt, N. H. A role for Fas-Fas ligand interactions during the late-stage neuropathological processes of experimental cerebral malaria. J Neuroimmunol. 2006, 173 (1–2), 96–107.
  • Freire-de-Lima, C. G.; Nascimento, D. O.; Soares, M. B.; Bozza, P. T.; Castro-Faria-Neto, H. C.; de Mello, F. G.; DosReis, G. A.; Lopes, M. F. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature. 2000, 403 (6766), 199–203.
  • Lopes, M. F.; Freire-de-Lima, C. G.; DosReis, G. A. The macrophage haunted by cell ghosts:A pathogen grows. Immunol Today. 2000, 21 (10), 489–494.
  • Nunes, M. P.; Andrade, R. M.; Lopes, M. F.; DosReis, G. A. Activation-induced T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+ T lymphocytes from infected hosts. J Immunol. 1998, 160 (3), 1313–1319.
  • van de Sand, C.; Horstmann, S.; Schmidt, A.; Sturm, A.; Bolte, S.; Krueger, A.; Lutgehetmann, M.; Pollok, J. M.; Libert, C.; Heussler, V. T. The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol. 2005, 58 (3), 731–742.
  • van Dijk, M. R.; Douradinha, B.; Franke-Fayard, B.; Heussler, V.; van Dooren, M. W.; van Schaijk, B.; van Gemert, G. J.; Sauerwein, R. W.; Mota, M. M.; Waters, A. P.; Janse, C. J. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc Natl Acad Sci USA. 2005, 102 (34), 12194–12199.
  • Leiriao, P.; Mota, M. M.; Rodriguez, A. Apoptotic Plasmodium-infected hepatocytes provide antigens to liver dendritic cells. J Infect Dis. 2005, 191 (10), 1576–1581.
  • Urban, B. C.; Willcox, N.; Roberts, D. J. A role for CD36 in the re gulation of dendritic cell function. Proc Natl Acad Sci USA. 2001, 98 (15), 8750–8755.
  • Wei, S.; Marches, F.; Borvak, J.; Zou, W.; Channon, J.; White, M.; Radke, J.; Cesbron-Delauw, M. F.; Curiel, T. J. Toxoplasma gondii-infected human myeloid dendritic cells induce T-lymphocyte dysfunction and contact-dependent apoptosis. Infect Immun. 2002, 70 (4), 1750–1760.
  • Parrino, J.; Hotchkiss, R. S.; Bray, M. Prevention of immune cell apoptosis as potential therapeutic strategy for severe infections. Emerg Infect Dis. 2007, 13 (2), 191–198.
  • Molina, J.; Brener, Z.; Romanha, A. J.; Urbina, J. A. In vivo activity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite Trypanosoma cruzi. J Antimicrob Chemother. 2000, 46 (1), 137–140.
  • Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A. J.; Loebenberg, D.; Urbina, J. A. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother. 2000, 44 (1), 150–155.
  • Olivieri, B. P.; Cotta-De-Almeida, V.; Araujo-Jorge, T. Benznidazole treatment following acute Trypanosoma cruzi infection triggers CD8+ T-cell expansion and promotes resistance to reinfection. Antimicrob. Agents Chemother. 2002, 46 (12), 3790–3796.
  • Bustamante, J. M.; Bixby, L. M.; Tarleton, R. L. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat Med. 2008, 14 (5), 542–550.
  • Wesche-Soldato, D. E.; Swan, R. Z.; Chung, C. S.; Ayala, A. The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets. 2007, 8 (4), 493–500.
  • Hotchkiss, R. S.; Nicholson, D. W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006, 6 (11), 813–822.
  • Hotchkiss, R. S.; Tinsley, K. W.; Swanson, P. E.; Chang, K. C.; Cobb, J. P.; Buchman, T. G.; Korsmeyer, S. J.; Karl, I. E. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA. 1999, 96 (25), 14541–14546.
  • Hotchkiss, R. S.; Chang, K. C.; Grayson, M. H.; Tinsley, K. W.; Dunne, B. S.; Davis, C. G.; Osborne, D. F.; Karl, I. E. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA. 2003, 100 (11), 6724–6729.
  • Silva, E. M.; Guillermo, L. V.; Ribeiro-Gomes, F. L.; De Meis, J.; Nunes, M. P.; Senra, J. F.; Soares, M. B.; DosReis, G. A.; Lopes, M. F. Caspase inhibition reduces lymphocyte apoptosis and improves host immune responses to Trypanosoma cruzi infection. Eur J Immunol. 2007, 37 (3), 738–746.
  • Scheller, C.; Knoferle, J.; Ullrich, A.; Prottengeier, J.; Racek, T.; Sopper, S.; Jassoy, C.; Rethwilm, A.; Koutsilieri, E. Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem. 2006, 97 (6), 1350–1361.
  • Yu, L.; Alva, A.; Su, H.; Dutt, P.; Freundt, E.; Welsh, S.; Baehrecke, E. H.; Lenardo, M. J. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase–8. Science. 2004, 304 (5676), 1500–1502.
  • Gallucci, S.; Lolkema, M.; Matzinger, P. Natural adjuvants: Endogenous activators of dendritic cells. Nat Med. 1999, 5 (11), 1249–1255.
  • Sauter, B.; Albert, M. L.; Francisco, L.; Larsson, M.; Somersan, S.; Bhardwaj, N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000, 191 (3), 423–434.
  • Chung, C. S.; Yang, S.; Song, G. Y.; Lomas, J.; Wang, P.; Simms, H. H.; Chaudry, I. H.; Ayala, A. Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery. 2001, 130 (2), 339–345.
  • Wesche-Soldato, D. E.; Chung, C. S.; Lomas-Neira, J.; Doughty, L. A.; Gregory, S. H.; Ayala, A. In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood. 2005, 106 (7), 2295–2301.
  • Carrero, J. A.; Unanue, E. R. Lymphocyte apoptosis as an immune subversion strategy of microbial pathogens. Trends Immunol. 2006, 27 (11), 497–503.
  • Zheng, S. J.; Jiang, J.; Shen, H.; Chen, Y. H. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004, 173 (9), 5652–5658.
  • Fuse, Y.; Nishimura, H.; Maeda, K.; Yoshikai, Y. CD95 (Fas) may control the expansion of activated T cells after elimination of bacteria in murine listeriosis. Infect Immun. 1997, 65 (5), 1883–1891.
  • Jensen, E. R.; Glass, A. A.; Clark, W. R.; Wing, E. J.; Miller, J. F.; Gregory, S. H. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect Immun. 1998, 66 (9), 4143–4150.
  • Lopes, M. F.; Guillermo, L. V.; Silva, E. M. Decoding caspase signaling in host immunity to the protozoan Trypanosoma cruzi. Trends Immunol. 2007, 28 (8), 366–372.
  • Martins, G. A.; Petkova, S. B.; MacHado, F. S.; Kitsis, R. N.; Weiss, L. M.; Wittner, M.; Tanowitz, H. B.; Silva, J. S. Fas-FasL interaction modulates nitric oxide production in Trypanosoma cruzi-infected mice. Immunology. 2001, 103 (1), 122–129.
  • Salmena, L.; Lemmers, B.; Hakem, A.; Matysiak-Zablocki, E.; Murakami, K.; Au, P. Y.; Berry, D. M.; Tamblyn, L.; Shehabeldin, A.; Migon, E.; Wakeham, A.; Bouchard, D.; Yeh, W. C.; McGlade, J. C.; Ohashi, P. S.; Hakem, R. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 2003, 17 (7), 883–895.
  • Wu, Z.; Roberts, M.; Porter, M.; Walker, F.; Wherry, E. J.; Kelly, J.; Gadina, M.; Silva, E. M.; DosReis, G. A.; Lopes, M. F.; O’shea, J.; Leonard, W. J.; Ahmed, R.; Siegel, R. M. Viral FLIP impairs survival of activated T cells and generation of CD8+ T cell memory. J Immunol. 2004, 172 (10), 6313–6323.
  • Silva, E. M.; Guillermo, L. V.; Ribeiro-Gomes, F. L.; De Meis, J.; Pereira, R. M.; Wu, Z.; Calegari-Silva, T. C.; Seabra, S. H.; Lopes, U. G.; Siegel, R. M.; Dosreis, G. A.; Lopes, M. F. Caspase-8 activity prevents type 2 cytokine responses and is required for protective T cell-mediated immunity against Trypanosoma cruzi infection. J Immunol. 2005, 174 (10), 6314–6321.
  • Hinshaw-Makepeace, J.; Huston, G.; Fortner, K. A.; Russell, J. Q.; Holoch, D.; Swain, S.; Budd, R. C. c-FLIP(S) reduces activation of caspase and NF-kappaB pathways and decreases T cell survival. Eur J Immunol. 2008, 38 (1), 54–63.
  • Chun, H. J.; Zheng, L.; Ahmad, M.; Wang, J.; Speirs, C. K.; Siegel, R. M.; Dale, J. K.; Puck, J.; Davis, J.; Hall, C. G.; Skoda-Smith, S.; Atkinson, T. P.; Straus, S. E.; Lenardo, M. J. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002, 419 (6905), 395–399.
  • Su, H.; Bidere, N.; Zheng, L.; Cubre, A.; Sakai, K.; Dale, J.; Salmena, L.; Hakem, R.; Straus, S.; Lenardo, M. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science. 2005, 307 (5714), 1465–1468.
  • Pereira, W. F.; Guillermo, L. V.; Ribeiro-Gomes, F. L.; Lopes, M. F. Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection. An Acad Bras Cienc. 2008, 80 (1), 129–136.
  • Siegel, R. M. Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol. 2006, 6 (4), 308–317.
  • Strasser, A.; Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 2004, 25 (11), 610–615.
  • Hildeman, D. A.; Zhu, Y.; Mitchell, T. C.; Bouillet, P.; Strasser, A.; Kappler, J.; Marrack, P. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity. 2002, 16 (6), 759–767.
  • Pandiyan, P.; Zheng, L.; Ishihara, S.; Reed, J.; Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007, 8 (12), 1353–1362.
  • Pandiyan, P.; Lenardo, M. J. The control of CD4+CD25+Foxp3+ regulatory T cell survival. Biol Direct. 2008, 3 6.
  • Reckling, S.; Divanovic, S.; Karp, C. L.; Wojciechowski, S.; Belkaid, Y.; Hildeman, D. Proapoptotic Bcl-2 family member Bim promotes persistent infection and limits protective immunity. Infect Immun. 2008, 76 (3), 1179–1185.
  • Lopes, M. F.; DosReis, G. A. Apoptosis as a cause of T-cell unresponsiveness in experimental Chagas’ disease. Braz J Med Biol Res. 1995, 28 (8), 913–918.
  • de Meis, J.; Ferreira, L. M.; Guillermo, L. V.; Silva, E. M.; Dosreis, G. A.; Lopes, M. F. Apoptosis differentially regulates mesenteric and subcutaneous lymph node immune responses to Trypanosoma cruzi. Eur J Immunol. 2008, 38 (1), 139–146.
  • Zhang, J.; Andrade, Z. A.; Yu, Z. X.; Andrade, S. G.; Takeda, K.; Sadirgursky, M.; Ferrans, V. J. Apoptosis in a canine model of acute Chagasic myocarditis. J Mol Cell Cardiol. 1999, 31 (3), 581–596.
  • Rossi, M. A.; Souza, A. C. Is apoptosis a mechanism of cell death of cardiomyocytes in chronic Chagasic myocarditis? Int J Cardiol. 1999, 68 (3), 325–331.
  • Tostes, S., Jr.; Bertulucci Rocha-Rodrigues, D.; de Araujo Pereira, G.; Rodrigues, V., Jr. Myocardiocyte apoptosis in heart failure in chronic Chagas’ disease. Int J Cardiol. 2005, 99 (2), 233–237.
  • Teixeira, P. C.; Iwai, L. K.; Kuramoto, A. C.; Honorato, R.; Fiorelli, A.; Stolf, N.; Kalil, J.; Cunha-Neto, E. Proteomic inventory of myocardial proteins from patients with chronic Chagas’ cardiomyopathy. Braz J Med Biol Res. 2006, 39 (12), 1549–1562.
  • Rodrigues, V., Jr.; Agrelli, G. S.; Leon, S. C.; Silva Teixeira, D. N.; Tostes, S., Jr.; Rocha-Rodrigues, D. B. Fas/Fas-L expression, apoptosis and low proliferative response are associated with heart failure in patients with chronic Chagas’ disease. Microbes Infect. 2008, 10 (1), 29–37.
  • Muller, U.; Sobek, V.; Balkow, S.; Holscher, C.; Mullbacher, A.; Museteanu, C.; Mossmann, H.; Simon, M. M. Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur J Immunol. 2003, 33 (1), 70–78.
  • de Oliveira, G. M.; Diniz, R. L.; Batista, W.; Batista, M. M.; Bani Correa, C.; de Araujo-Jorge, T. C.; Henriques-Pons, A. Fas ligand-dependent inflammatory regulation in acute myocarditis induced by Trypanosoma cruzi infection. Am J Pathol. 2007, 171 (1), 79–86.
  • Henriques-Pons, A.; Oliveira, G. M.; Paiva, M. M.; Correa, A. F.; Batista, M. M.; Bisaggio, R. C.; Liu, C. C.; Cotta-De-Almeida, V.; Coutinho, C. M.; Persechini, P. M.; Araujo-Jorge, T. C. Evidence for a perforin-mediated mechanism controlling cardiac inflammation in Trypanosoma cruzi infection. Int J Exp Pathol. 2002, 83 (2), 67–79.
  • Hu, M. S.; Schwartzman, J. D.; Yeaman, G. R.; Collins, J.; Seguin, R.; Khan, I. A.; Kasper, L. H. Fas-FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun. 1999, 67 (2), 928–935.
  • Eidsmo, L.; Nylen, S.; Khamesipour, A.; Hedblad, M. A.; Chiodi, F.; Akuffo, H. The contribution of the Fas/FasL apoptotic pathway in ulcer formation during Leishmania major-induced cutaneous leishmaniasis. Am J Pathol. 2005, 166 (4), 1099–1108.
  • Eidsmo, L.; Fluur, C.; Rethi, B.; Eriksson Ygberg, S.; Ruffin, N.; De Milito, A.; Akuffo, H.; Chiodi, F. FasL and TRAIL induce epidermal apoptosis and skin ulceration upon exposure to Leishmania major. Am J Pathol. 2007, 170 (1), 227–239.
  • Vieira, L. Q.; Goldschmidt, M.; Nashleanas, M.; Pfeffer, K.; Mak, T.; Scott, P. Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J Immunol. 1996, 157 (2), 827–835.
  • Castanos-Velez, E.; Maerlan, S.; Osorio, L. M.; Aberg, F.; Biberfeld, P.; Orn, A.; Rottenberg, M. E. Trypanosoma cruzi infection in tumor necrosis factor receptor p55-deficient mice. Infect Immun. 1998, 66 (6), 2960–2968.
  • Ojcius, D. M.; Perfettini, J. L.; Bonnin, A.; Laurent, F. Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes Infect. 1999, 1 (14), 1163–1168.
  • McCole, D. F.; Eckmann, L.; Laurent, F.; Kagnoff, M. F. Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun. 2000, 68 (3), 1710–1713.
  • Chen, X. M.; Gores, G. J.; Paya, C. V.; LaRusso, N. F. Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. Am J Physiol. 1999, 277 (3 Pt 1), G599–608.
  • O’Hara, S. P.; Small, A. J.; Nelson, J. B.; Badley, A. D.; Chen, X. M.; Gores, G. J.; Larusso, N. F. The human immunodeficiency virus type 1 tat protein enhances Cryptosporidium parvum-induced apoptosis in cholangiocytes via a Fas ligand-dependent mechanism. Infect Immun. 2007, 75 (2), 684–696.
  • Motta, I.; Gissot, M.; Kanellopoulos, J. M.; Ojcius, D. M. Absence of weight loss during Cryptosporidium infection in susceptible mice deficient in Fas-mediated apoptosis. Microbes Infect. 2002, 4 (8), 821–827.
  • Leiriao, P.; Rodrigues, C. D.; Albuquerque, S. S.; Mota, M. M. Survival of protozoan intracellular parasites in host cells. EMBO Rep. 2004, 5 (12), 1142–1147.
  • Lackner, P.; Burger, C.; Pfaller, K.; Heussler, V.; Helbok, R.; Morandell, M.; Broessner, G.; Tannich, E.; Schmutzhard, E.; Beer, R. Apoptosis in experimental cerebral malaria: Spatial profile of cleaved caspase-3 and ultrastructural alterations in different disease stages. Neuropathol Appl Neurobiol. 2007, 33 (5), 560–571.
  • Pino, P.; Vouldoukis, I.; Kolb, J. P.; Mahmoudi, N.; Desportes-Livage, I.; Bricaire, F.; Danis, M.; Dugas, B.; Mazier, D. Plasmodium falciparum: Infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis. 2003, 187 (8), 1283–1290.
  • Ohno, T.; Kobayashi, F.; Nishimura, M. Fas has a role in cerebral malaria, but not in proliferation or exclusion of the murine parasite in mice. Immunogenetics. 2005, 57 (3–4), 293–296.
  • Piguet, P. F.; Kan, C. D.; Vesin, C. Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis. 2002, 7 (2), 91–98.
  • Guha, M.; Kumar, S.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. Faseb J. 2006, 20 (8), 1224–1226.
  • Chen, M.; Wang, Y. H.; Wang, Y.; Huang, L.; Sandoval, H.; Liu, Y. J.; Wang, J. Dendritic cell apoptosis in the maintenance of immune tolerance. Science. 2006, 311 (5764), 1160–1164.
  • Allen, H. L.; Deepe, G. S., Jr. Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. J Clin Invest. 2005, 115 (10), 2875–2885.
  • Popov, S. G.; Popova, T. G.; Grene, E.; Klotz, F.; Cardwell, J.; Bradburne, C.; Jama, Y.; Maland, M.; Wells, J.; Nalca, A.; Voss, T.; Bailey, C.; Alibek, K. Systemic cytokine response in murine anthrax. Cell Microbiol. 2004, 6 (3), 225–233.
  • Sehra, S.; Patel, D.; Kusam, S.; Wang, Z. Y.; Chang, C. H.; Dent, A. L. A role for caspases in controlling IL-4 expression in T cells. J Immunol. 2005, 174 (6), 3440–3446.
  • de Freitas Balanco, J. M.; Moreira, M. E.; Bonomo, A.; Bozza, P. T.; Amarante-Mendes, G.; Pirmez, C.; Barcinski, M. A. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol. 2001, 11 (23), 1870–1873.
  • Wanderley, J. L.; Moreira, M. E.; Benjamin, A.; Bonomo, A. C.; Barcinski, M. A. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol. 2006, 176 (3), 1834–1839.
  • Kosec, G.; Alvarez, V. E.; Aguero, F.; Sanchez, D.; Dolinar, M.; Turk, B.; Turk, V.; Cazzulo, J. J. Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol. 2006, 145 (1), 18–28.
  • Weaver, J. G.; Tarze, A.; Moffat, T. C.; Lebras, M.; Deniaud, A.; Brenner, C.; Bren, G. D.; Morin, M. Y.; Phenix, B. N.; Dong, L.; Jiang, S. X.; Sim, V. L.; Zurakowski, B.; Lallier, J.; Hardin, H.; Wettstein, P.; van Heeswijk, R. P.; Douen, A.; Kroemer, R. T.; Hou, S. T.; Bennett, S. A.; Lynch, D. H.; Kroemer, G.; Badley, A. D. Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. J Clin Invest. 2005, 115 (7), 1828–1838.