63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potentiation of murine innate immunity by α-galacturonosyl-type glycosphingolipids isolated from Sphingomonas yanoikuyae and S. terrae

, , , &
Pages 363-369 | Received 18 Jul 2008, Accepted 25 Aug 2008, Published online: 11 May 2009

References

  • Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J., Baxter, A.G. NKT cells: Facts, functions and fallacies. Immunol. Today 2000, 21 (11), 573–583.
  • Kronenberg, M. Toward an understanding of NKT cell biology: Progress and paradoxes. Annu. Rev. Immunol. 2005, 23 (1), 877–900.
  • Bendelac, A., Savage, P.B., Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 2007, 25 (1), 297–336.
  • Takahashi, T., Nieda, M., Koezuka, Y., Nicol, A., Porcelli, S.A., Ishikawa, Y., Tadokoro, K., Hirai, H., Juji, T. Analysis of human V alpha 24+ CD4+ NKT cells activated by alpha-glycosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 2000, 164 (9), 4458–4464.
  • Brigl, M., Brenner, M.B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 2004, 22 (1), 817–890.
  • Zhou, D., Mattner, J., Cantu, C. 3rd., Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, Y.P., Yamashita, T., Teneberg, S., Wang, D., Proia, R.L., Levery, S.B., Savage, P.B., Teyton, L., Bendelac, A. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004, 306 (5702), 1786–1789.
  • Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, M.R., Zajonc, D.M., Ben-Menachem, G., Ainge, G.D., Painter, G.F., Khurana, A., Hoebe, K., Behar, S.M., Beutler, B., Wilson, I.A., Tsuji, M., Sellati, T.J., Wong, C.H., Kronenberg, M. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunol. 2006, 7 (9), 978–986.
  • Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H., Koezuka, Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 1995, 7 (10-11), 529–534.
  • Toura, I., Kawano, T., Akutsu, Y., Nakayama, T., Ochiai, T., Taniguchi, M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J. Immunol. 1999, 163 (5), 2387–2391.
  • Fujii, S., Shimizu, K., Henmi, H., Fukui, M., Bonito, A.J., Chen, G., Franck, R.W., Tsuji, M., Steinman, R.M. Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl. Acad. Sci. USA. 2006, 103 (30), 11252–11257.
  • Miyamoto, K., Miyake, S., Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413 (6855), 531–534.
  • Chiba, A., Oki, S., Miyamoto, K., Hashimoto, H., Yamamura, T., Miyake, S. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of alpha-galactosylceramide. Arthritis Rheum. 2004, 50 (1), 305–313.
  • Nieuwenhuis, E.E., Matsumoto, T., Exley, M., Schleipman, R.A., Glickman, J., Bailey, D.T., Corazza, N., Colgan, S.P., Onderdonk, A.B., Blumberg, R.S. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Natl. Med. 2002, 8 (6), 588–593.
  • Chackerian, A., Alt, J., Perera, V., Behar, S.M. Activation of NKT cells protects mice from tuberculosis. Infect. Immun. 2002, 70 (11), 6302–6309.
  • Kawakami, K., Yamamoto, N., Kinjo, Y., Miyagi, K., Nakasone, C., Uezu, K., Kinjo, T., Nakayama, T., Taniguchi, M., Saito, A. Critical role of Valpha 14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur. J. Immunol. 2003, 33 (12), 3322–3330.
  • Van Dommelen, S.L., Tabarias, H.A., Smyth, M.J., Degli-Esposti, M.A. Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J. Virol. 2003, 77 (3), 1877–1884.
  • Kinjo, Y., Wu, D., Kim, G., Xing, G.W., Poles, M.A., Ho, D.D., Tsuji, M.: Kawahara, K., Wong, C.H., Kronenberg, M. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005, 434 (7032), 520–525.
  • Mattner, J., Debord, K.L., Ismail, N., Goff, R.D., Cantu, C. 3rd., Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P.B., Bendelac, A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Natl. 2005, 434 (7032), 525–529.
  • Kawahara, K., Kubota, M., Sato, N., Tsuge, K., Seto, Y. Occurrence of an alpha-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol. Lett. 2002, 214 (2), 289–294.
  • Tsuji, M. Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell Mol. Life Sci. 2006, 63 (16), 1889–1898.
  • Brutkiewicz, R.R. CD1d Ligands: The good, the bad, and the ugly. J. Immunol. 2006, 177 (2), 769–775.
  • Yabuuchi, Y., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., Yamamoto, H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 1990, 34 (2), 99–119.
  • Takeuchi, M., Kawai, F., Shimada, Y., Yokota, A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended descriptions of the genus Sphingomonas and new description of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst. Appl. Microbiol. 1993, 16, 227–238.
  • Kawahara, K., Mizuta, I., Katabami, W., Koizumi, M., Wakayama, S. Isolation of Sphingomonas strains from ears of rice and other plants of family Gramineae. Biosci. Biotech. Biochem. 1994, 58 (3), 600–601.
  • Yabuuchi, E., Yamamoto, H., Terakubo, S., Okamura, N., Naka, T., Fujiwara, N., Kobayashi, K., Kosako, Y., Hiraishi, A. Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, Known as a dibenzo-p-dioxin metabolizer. Int. J. Syst. Evol. Microbiol. 2001, 51, 281–292.
  • Kawahara, K., Kuraishi, H., Zähringer, U. Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the alpha-4 subclass of Proteobacteria. J. Ind. Microbiol. Biotechnol. 1999, 23 (4-5), 408–413.
  • Sriram, V., Du, W., Gervay-Hague, J., Brutkiewicz, R.R. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 2005, 35 (6), 1692–1701.
  • Wilson, M.T., Johansson, C., Olivares-Villagómez, D., Singh, A.K., Stanic, A.K., Wang, C.R., Joyce, S., Wick, M.J., Van Kaer, L. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA. 2003, 100 (19), 10913–10918.
  • Harada, M., Seino, K., Wakao, H., Sakata, S., Ishizuka, Y., Ito, T., Kojo, S., Nakayama, T., Taniguchi, M. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol. 2004, 16 (2), 241–247.
  • Wu, D., Xing, G.W., Poles, M.A., Horowiz, A., Kinjo, Y., Sullivan, B., Bodmer-Narkevitch, V., Plettenburg, O., Kronenberg, M., Tsuji, M., Ho, D.D., Wong, C.H. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA. 2005, 102 (5), 1351–1356.
  • Godfrey, D.I., McCluskey, J., Rossjohn, J. CD1d antigen presentation: Treats for NKT cells. Natl. Immunol. 2005, 6 (8), 754–756.
  • McCarthy, C., Shepherd, D., Fleire, S., Stronge V.S., Koch, M., Illarionov, P.A., Bossi, G., Salio, M., Denkberg, G., Reddington, F., Tarlton, A., Reddy, B.G., Schmidt, R.R., Reiter, Y., Griffiths, G.M., van der Merwe, P.A., Besra, G.S., Jones, E.Y., Batista, F.D., Cerundolo, V. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 2007, 204 (5), 1131–1144.
  • Kamada, N., Iijima, H., Kimura, K., Harada, M., Shimizu, E., Motohashi, S., Kawano, T., Shinkai, H., Nakayama, T., Sakai, T., Brossay, L., Kronenberg, M., Taniguchi, M. Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells. Int. Immunol. 2001, 13 (7), 853–861.
  • Burdin, N., Brossay, L., Degano, M., Iijima, H., Gui, M., Wilson, I.A., Kronenberg, M. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA. 2000, 97 (18), 10156–10161.
  • Wu, D., Zajonc, D.M., Fujio, M., Sullivan, B.A., Kinjo, Y., Kronenberg, M., Wilson, I.A., Wong, CH. Design of natural killer T cell activators: Structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc. Natl. Acad. Sci. USA. 2006, 103 (11), 3972–3877.
  • Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., Fukushima, H. Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 1995, 38 (12), 2176–2187.
  • Koch, M., Stronger, V.S., Shepherd, D., Gadola, S.D., Mathew, B., Ritter, G., Fersht, A.R., Besra, G.S., Schmidt, R.R., Jones, E.Y., Cerundolo, V. The crystal structure of human CD1d with and without alpha-galactosylceramide. Natl. Immunol. 2005, 6 (8), 819–826.
  • Hung, L.C., Lin, C.C., Hung, S.K., Wu, B.C., Jan, M.D., Liou, S.H., Fu, S.L. A synthetic analog of alpha-galactosylceramide induces macrophage activation via the TLR4-signaling pathways. Biochem. Pharmacol. 2007, 73 (12), 1957–1970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.